| [1] |
FATEMI D J, BLOOMFIELD L A. Photoelectron spectroscopy of sodium iodide clusters containing single hydroxyl ions or water molecules [J]. Physical Review A, 2002, 66(1): 013202. doi: 10.1103/PhysRevA.66.013202
|
| [2] |
FATEMI F K, DALLY A J, BLOOMFIELD L A. Photodesorption of alkali anions from alkali-halide cluster anions [J]. Physical Review Letters, 2003, 91(7): 073401. doi: 10.1103/PhysRevLett.91.073401
|
| [3] |
MEI A B, HELLMAN O, WIREKLINT N, et al. Dynamic and structural stability of cubic vanadium nitride [J]. Physical Review B, 2015, 91(5): 054101. doi: 10.1103/PhysRevB.91.054101
|
| [4] |
KANHAIYALAL, DIGPRATAP S. Interatomic distances for alkali halides at high pressure [J]. Computational Condensed Matter, 2024, 38: e00877. doi: 10.1016/j.cocom.2023.e00877
|
| [5] |
DEMMEL F, ALCARAZ O, TRULLAS J. Br diffusion in molten NaBr explored by coherent quasielastic neutron scattering [J]. Physical Review E, 2016, 93(4): 042604. doi: 10.1103/PhysRevE.93.042604
|
| [6] |
KUMAR P, ROY D R. Optical and thermoelectric properties of square lattice phases of alkali halide compounds [J]. Journal of Physics and Chemistry of Solids, 2023, 174: 111142. doi: 10.1016/j.jpcs.2022.111142
|
| [7] |
KUMAR P, RAJPUT K, ROY D R. Structural, vibrational, electronic, elastic and thermoelectric properties of monolayer alkali halide compounds from first principles investigation [J]. Materials Today Communications, 2021, 29: 102855. doi: 10.1016/j.mtcomm.2021.102855
|
| [8] |
KAPOOR S, SINGH S. The study of mechanical properties of lithium halides under high pressure at room temperature [J]. Solid State Communications, 2022, 341: 114574. doi: 10.1016/j.ssc.2021.114574
|
| [9] |
LAGOS M, ASENJO F, HAUYÓN R, et al. Line shapes of narrow optical bands: infrared absorption by U centers and heavier impurities in alkali halides [J]. Physical Review B, 2008, 77(10): 104305. doi: 10.1103/PhysRevB.77.104305
|
| [10] |
SAFARI M, MASKANEH P, MOGHADAM A D, et al. Lithium halide monolayers: structural, electronic and optical properties by first principles study [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83: 426–433. doi: 10.1016/j.physe.2016.01.025
|
| [11] |
HOYA J, LABORDE J I, RICHARD D, et al. Ab initio study of F-centers in alkali halides [J]. Computational Materials Science, 2017, 139: 1–7. doi: 10.1016/j.commatsci.2017.07.015
|
| [12] |
WANG J J, DENG M H, CHEN Y H, et al. Structural, elastic, electronic and optical properties of lithium halides (LiF, LiCl, LiBr, and LiI): first-principle calculations [J]. Materials Chemistry and Physics, 2020, 244: 122733. doi: 10.1016/j.matchemphys.2020.122733
|
| [13] |
阿卜力孜·麦提图尔荪, 艾尼瓦尔·吾术尔, 谢翠焕, 等. 碳酸铅在不同传压介质下的高压拉曼研究 [J]. 高压物理学报, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813ABLIZ M, ANWAR H, XIE C H, et al. High pressure raman spectroscopic study of PbCO3 in different pressure transmitting medium [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
|
| [14] |
陈炜珊, 谭毅, 谭大勇, 等. NaPO3高压结构行为的第一性原理理论研究 [J]. 高压物理学报, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755CHEN W S, TAN Y, TAN D Y, et al. First-principles theoretical study on the structure behaviors of NaPO3 under compression [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755
|
| [15] |
王晓雪, 丁雨晴, 王晖. 硝酸铷高压相变和物理性质的第一性原理研究 [J]. 高压物理学报, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776WANG X X, DING Y Q, WANG H. First-principles study of the high-pressure phase transition and physical properties of rubidium nitrate [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
|
| [16] |
LI N N, MANOUN B, TAMRAOUI Y, et al. Structural and electronic phase transitions of Co2Te3O8 spiroffite under high pressure [J]. Physical Review B, 2019, 99(24): 245125. doi: 10.1103/PhysRevB.99.245125
|
| [17] |
COVA F, BLANCO M V, HANFLAND M, et al. Study of the high pressure phase evolution of Co3O4 [J]. Physical Review B, 2019, 100(5): 054111. doi: 10.1103/PhysRevB.100.054111
|
| [18] |
RUIZ-FUERTES J, HIRSCH A, FRIEDRICH A, et al. High-pressure phase of LaPO4 studied by X-ray diffraction and second harmonic generation [J]. Physical Review B, 2016, 94(13): 134109. doi: 10.1103/PhysRevB.94.134109
|
| [19] |
李佐, 刘云, 廖大麟, 等. 高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究 [J]. 高压物理学报, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514LI Z, LIU Y, LIAO D L, et al. First-principles study on structural, electronic and optical properties of G2ZT crystal under high pressure [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
|
| [20] |
曾阳阳, 朱刚贝, 王文涛, 等. 高压下硝酸肼结构演化的中远红外光谱和第一性原理计算研究 [J]. 高压物理学报, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804ZENG Y Y, ZHU G B, WANG W T, et al. Mid- and far-infrared spectroscopic and first-principles computational study of the structural evolution of hydrazine nitrate under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804
|
| [21] |
MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
|
| [22] |
QI W M, LI P W, GAO M, et al. Mineral pressure gauge based on lattice stability and plasmonic enhancement of cobalt titanate under high pressure [J]. Physical Review B, 2023, 107(8): 085429. doi: 10.1103/PhysRevB.107.085429
|
| [23] |
QI W M, XIE C H, HUSHUR A, et al. Pressure-induced successive phase transitions and Fano resonance engineering in lead-free piezoceramics KNbO3 [J]. Applied Physics Letters, 2023, 122(23): 232901. doi: 10.1063/5.0143105
|
| [24] |
HU K G, ZHOU Z M, WEI Y W, et al. Bond ordering and phase transitions in Na2IrO3 under high pressure [J]. Physical Review B, 2018, 98(10): 100103(R).
|
| [25] |
DEMAREST JR H H, CASSELL C R, JAMIESON J C. The high pressure phase transitions in KF and RbF [J]. Journal of Physics and Chemistry of Solids, 1978, 39(11): 1211–1215. doi: 10.1016/0022-3697(78)90099-9
|
| [26] |
LOUIS C N, IYAKUTTI K. Electronic band structure and metallization of KI and RbI under high pressure [J]. Physica Status Solidi (B), 2002, 233(2): 339–350. doi: 10.1002/1521-3951(200209)233:2<339::AID-PSSB339>3.0.CO;2-6
|
| [27] |
TURNEAURE S J, GUPTA Y M, RIGG P. Shock induced phase change in KCl single crystals: orientation relations between the B1 and B2 lattices [J]. Journal of Applied Physics, 2009, 105(1): 013544. doi: 10.1063/1.3065522
|
| [28] |
KAPOOR S, GOUR A, SINGH S. Structural and elastic properties of KBr at high pressure and high temperature [J]. Phase Transitions, 2017, 90(10): 955–963. doi: 10.1080/01411594.2017.1292515
|
| [29] |
WANG H Y, HU Q K, LI C Y, et al. Phase transition, elastic, and thermodynamic properties of NaF under high pressure [J]. Phase Transitions, 2012, 85(5): 409–418. doi: 10.1080/01411594.2011.635521
|
| [30] |
HEINZ D L, JEANLOZ R. Compression of the B2 high-pressure phase of NaCl [J]. Physical Review B, 1984, 30(10): 6045–6050. doi: 10.1103/PhysRevB.30.6045
|
| [31] |
LÉGER J M, HAINES J, DANNEELS C, et al. The TlI-type structure of the high-pressure phase of NaBr and NaI: pressure-volume behaviour to 40 GPa [J]. Journal of Physics: Condensed Matter, 1998, 10(19): 4201–4210. doi: 10.1088/0953-8984/10/19/008
|
| [32] |
ZHAO Z S, ZHOU X F, WANG L M, et al. Universal phase transitions of B1-structured stoichiometric transition metal carbides [J]. Inorganic Chemistry, 2011, 50(19): 9266–9272. doi: 10.1021/ic200356x
|
| [33] |
RAO B S, SANYAL S P. Structural and elastic properties of sodium halides at high pressure [J]. Physical Review B, 1990, 42(3): 1810–1816. doi: 10.1103/PhysRevB.42.1810
|
| [34] |
HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
|
| [35] |
KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
|
| [36] |
PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
|
| [37] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
|
| [38] |
LANGRETH D C, PERDEW J P. Theory of nonuniform electronic systems. Ⅰ. analysis of the gradient approximation and a generalization that works [J]. Physical Review B, 1980, 21(12): 5469–5493. doi: 10.1103/PhysRevB.21.5469
|
| [39] |
XIE Y Q, TAO H J, PENG H J, et al. Atomic states, potential energies, volumes, stability and brittleness of ordered fcc TiAl2 type alloys [J]. Physica B: Condensed Matter, 2005, 366(1/2/3/4): 17–37. doi: 10.1016/j.physb.2005.04.041
|
| [40] |
MAZUREK A, SZELESZCZUK Ł, PISKLAK D M. Can we predict the pressure induced phase transition of urea? application of quantum molecular dynamics [J]. Molecules, 2020, 25(7): 1584. doi: 10.3390/molecules25071584
|
| [41] |
AMRANI B, BENMESSABIH T, TAHIRI M, et al. First principles study of structural, elastic, electronic and optical properties of CuCl, CuBr and CuI compounds under hydrostatic pressure [J]. Physica B: Condensed Matter, 2006, 381(1/2): 179–186. doi: 10.1016/j.physb.2006.01.447
|
| [42] |
SAOUD F S, PLENET J C, HENINI M. Band gap and partial density of states for ZnO: under high pressure [J]. Journal of Alloys and Compounds, 2015, 619: 812–819. doi: 10.1016/j.jallcom.2014.08.069
|
| [43] |
MESSAOUDI I S, ZAOUI A, FERHAT M. Band-gap and phonon distribution in alkali halides [J]. Physica Status Solidi (B), 2015, 252(3): 490–495. doi: 10.1002/pssb.201451268
|
| [44] |
LEONI S, BOULFELFEL S E, BABURIN I A. A walk on the chemical landscape: the role of B33 along the B1–B2 phase transition in RbF and NaBr [J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2011, 637(7/8): 864–869. doi: 10.1002/zaac.201100045
|
| [45] |
DOLL K, STOLL H. Ground-state properties of heavy alkali halides [J]. Physical Review B, 1998, 57(8): 4327–4331. doi: 10.1103/PhysRevB.57.4327
|
| [46] |
BELAMEIRI N, TEBBOUNE A, MOKADDEM A, et al. Comparative study on performance and physical properties of CsI, NaI, RbI, and KBr materials [J]. Canadian Journal of Physics, 2016, 94(12): 1378–1383. doi: 10.1139/cjp-2016-0372
|
| [47] |
SIDDIQUE M, RAHMAN A U, IQBAL A, et al. A systematic first-principles investigation of structural, electronic, magnetic, and thermoelectric properties of thorium monopnictides ThPn (Pn = N, P, As): a comparative analysis of theoretical predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA+U methods [J]. International Journal of Thermophysics, 2019, 40(12): 104. doi: 10.1007/s10765-019-2572-7
|
| [48] |
ZHANG Y B, SUN J W, PERDEW J P, et al. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA [J]. Physical Review B, 2017, 96(3): 035143. doi: 10.1103/PhysRevB.96.035143
|
| [49] |
AHUJA R, ERIKSSON O, JOHANSSON B. Theoretical study of the high-pressure orthorhombic TlI-type phase in NaBr and NaI [J]. Physical Review B, 2001, 63(9): 092102. doi: 10.1103/PhysRevB.63.092102
|
| [50] |
MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
|
| [51] |
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
|
| [52] |
MAO P L, YU B, LIU Z, et al. Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure: a first-principles calculation [J]. Computational Materials Science, 2014, 88: 61–70. doi: 10.1016/j.commatsci.2014.03.006
|
| [53] |
REUSS A. Berechnung der fliebgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49–58. doi: 10.1002/zamm.19290090104
|
| [54] |
PUGH S F. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
|
| [55] |
HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography [J]. Computational Materials Science, 2017, 128: 140–184. doi: 10.1016/j.commatsci.2016.10.015
|
| [56] |
TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106
|
| [57] |
ZHANG C B, LI W D, ZHANG P, et al. Phase transition, elasticity, phonon spectra, and superconductive properties of equiatomic TiZr, TiHf, and ZrHf alloys at high pressure: ab initio calculations [J]. Computational Materials Science, 2020, 178: 109637. doi: 10.1016/j.commatsci.2020.109637
|
| [58] |
WANG B T, ZHANG P, LIU H Y, et al. First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium [J]. Journal of Applied Physics, 2011, 109(6): 063514. doi: 10.1063/1.3556753
|
| [59] |
MA H, ZHANG X D, LIU C, et al. Structural, elastic, anisotropic and thermodynamic properties of the caged intermetallics RETi2Al20 (RE = La, Ce, Gd and Ho): a first-principles study [J]. Solid State Sciences, 2019, 89: 121–129. doi: 10.1016/j.solidstatesciences.2018.12.023
|
| [60] |
ZHANG X D, HUANG W Y, MA H, et al. First-principles prediction of the physical properties of ThM2Al20 (M = Ti, V, Cr) intermetallics [J]. Solid State Communications, 2018, 284: 75–83. doi: 10.1016/j.ssc.2018.09.008
|
| [61] |
LASHGARI H, ABOLHASSANI M R, BOOCHANI A, et al. Ab initio study of electronic, magnetic, elastic and optical properties of full Heusler Co2MnSb [J]. Indian Journal of Physics, 2016, 90(8): 909–916. doi: 10.1007/s12648-015-0829-y
|
| [62] |
SHALMASHI K, KHOSRAVI H, BOOCHANI A, et al. Characterization of halide perovskite/titania interfaces as a function of the interlayer composition: a theoretical study [J]. Journal of Physics and Chemistry of Solids, 2020, 138: 109243. doi: 10.1016/j.jpcs.2019.109243
|
| [63] |
RIZWAN M, FARMAN M, AKGÜL A, et al. Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight [J]. Indian Journal of Physics, 2022, 96(4): 1–9. doi: 10.1007/s12648-021-02031-2
|
| [64] |
RUDYSH M Y, FEDORCHUK A O, BRIK M G, et al. Electronic, optical, and vibrational properties of an AgAlS2 crystal in a high-pressure phase [J]. Materials, 2023, 16(21): 7017. doi: 10.3390/ma16217017
|
| [65] |
SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 8828–8834. doi: 10.1103/PhysRevB.62.8828
|
| [66] |
HAO A M, YANG X C, ZHANG L X, et al. First-principles investigations on physical properties of NdN under high pressure [J]. Journal of Physics and Chemistry of Solids, 2013, 74(10): 1504–1508. doi: 10.1016/j.jpcs.2013.05.019
|
| [67] |
LI P, FAN W L, LI Y L, et al. First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride [J]. Inorganic Chemistry, 2010, 49(15): 6917–6924. doi: 10.1021/ic1004819
|