高压下NaI结构相变和物性的第一性原理研究

徐威 亓文明 海迪且木·阿布都吾甫尔 鹿桂花 卫来 李鹏 高敏

徐威, 亓文明, 海迪且木·阿布都吾甫尔, 鹿桂花, 卫来, 李鹏, 高敏. 高压下NaI结构相变和物性的第一性原理研究[J]. 高压物理学报, 2025, 39(8): 081101. doi: 10.11858/gywlxb.20251028
引用本文: 徐威, 亓文明, 海迪且木·阿布都吾甫尔, 鹿桂花, 卫来, 李鹏, 高敏. 高压下NaI结构相变和物性的第一性原理研究[J]. 高压物理学报, 2025, 39(8): 081101. doi: 10.11858/gywlxb.20251028
XU Wei, QI Wenming, ABDUGOPUR Hadiqa, LU Guihua, WEI Lai, LI Peng, GAO Min. First-Principles Study of the Structural Phase Transition and Physical Properties in NaI under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 081101. doi: 10.11858/gywlxb.20251028
Citation: XU Wei, QI Wenming, ABDUGOPUR Hadiqa, LU Guihua, WEI Lai, LI Peng, GAO Min. First-Principles Study of the Structural Phase Transition and Physical Properties in NaI under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 081101. doi: 10.11858/gywlxb.20251028

高压下NaI结构相变和物性的第一性原理研究

doi: 10.11858/gywlxb.20251028
基金项目: 国家自然科学基金(12264048);新疆维吾尔自治区自然科学基金(2022D01C688);新疆维吾尔自治区天山创新团队项目(2023D14001)
详细信息
    作者简介:

    徐 威(1998-),男,硕士研究生,主要从事高压下凝聚态物质结构与物性的理论研究. E-mail:xw15751015337@sina.com

    亓文明(1993-),男,博士研究生,主要从事高压下凝聚态物理与光学研究. E-mail:wenming.hp@outlook.com

    通讯作者:

    李 鹏(1981-),男,博士,副教授,主要从事纳米光电材料、光子器件、传感器等研究.E-mail:lip@xju.edu.cn

    高 敏(1989-),男,博士,副教授,主要从事高压下的第一性原理计算与微纳光学研究.E-mail:mgao@xju.edu.cn

  • 中图分类号: O521.2

First-Principles Study of the Structural Phase Transition and Physical Properties in NaI under High Pressure

  • 摘要: NaI在高压下展现出与NaCl等其他碱金属卤化物截然不同的相变行为。X射线衍射实验结果表明,NaI在压力作用下由B1相转变为B33相。然而,由于实验中缺乏传压介质,并且NaI具有高吸水性,因此,实验获得的相变压力可能存在误差。鉴于此,采用基于密度泛函理论的第一性原理计算方法,预测了NaI在20 GPa压力下由B1相到B33相的结构相变。理论计算验证了之前的实验结果,但计算得到的相变压力略低于实验值。此外,详细阐释了NaI各项物理性质随压力的演变,发现高压下NaI的带隙减小,脆性和紫外区的光反射性能增强。研究结果为探索极端条件下碱金属卤化物的潜在应用奠定了理论基础。

     

  • 图  NaI的B1相和B33相的晶体结构

    Figure  1.  Crystal structures of B1 and B33 phases of NaI

    图  NaI的结构相变与配位数变化示意图

    Figure  2.  Phase transition of NaI and schematic diagram of coordination number change

    图  高压下NaI的B1相与B33相的焓差

    Figure  3.  Enthalpy difference between B1 and B33 phases of NaI at high pressure

    图  压力作用下B1相和B33相的晶胞参数(a)、归一化晶胞体积V/V0 (b)、键长(c)随压力的变化

    Figure  4.  Cell parameters (a), normalized volume V/V0 (b), and bond length (c) for B1 and B33 phases under different pressures

    图  (a) B1相的弹性常数,(b) B33相的弹性常数,(c) 压力下B1相和B33相的G/B和泊松比μ

    Figure  5.  (a) Elastic constants for B1 phase; (b) elastic constants for B33 phase; (c) G/B and Poisson’s ratio μ for B1 and B33 phases under high pressures

    图  高压下NaI的B1相和B33相带隙演变(a)以及HSE杂化泛函计算的能带曲线(b)

    Figure  6.  (a) Evolution of the band gap of B1 and B33 phases in NaI under high pressure; (b) energy band curve of NaI calculated by HSE hybrid functional

    图  40 GPa压力下NaI的B33相的能带结构和投影态密度

    Figure  7.  Band structure and PDOS in B33 phase of NaI at 40 GPa

    图  不同压力下NaI的能带结构和投影态密度

    Figure  8.  Band structure and PDOS of NaI under different pressures

    图  NaI的声子色散和声子态密度

    Figure  9.  Dispersion and phonon density of states in NaI

    图  10  0~20 GPa压力下NaI的声子色散和声子态密度

    Figure  10.  NaI phonon dispersion and phonon density of states under pressures from 0 to 20 GPa

    图  11  (a) NaI两相中的声子间隙与压力的关系,(b) 0 GPa下NaI的B33相的声子色散和声子态密度

    Figure  11.  (a) Pressure dependence of phonon gap in both phases of NaI; (b) phonon dispersion and PhDOS of B33 phase in NaI at 0 GPa

    图  12  NaI在不同压力下的吸收谱、反射谱和复折射率

    Figure  12.  Absorption spectrum, reflection spectrum and complex refractive index of NaI at different pressures

    表  1  计算和实验得到的晶格参数和晶胞体积

    Table  1.   Lattice parameters and cell volume obtained from theoretical calculations and experiments

    Phasep/GPaabcV3Method
    B106.54279.82This study
    6.52278.19Calc.[43]
    6.46269.58Exp.[46]
    B33313.5710.344.17154.35This study
    3.5910.434.17156.44Exp.[31]
    下载: 导出CSV
  • [1] FATEMI D J, BLOOMFIELD L A. Photoelectron spectroscopy of sodium iodide clusters containing single hydroxyl ions or water molecules [J]. Physical Review A, 2002, 66(1): 013202. doi: 10.1103/PhysRevA.66.013202
    [2] FATEMI F K, DALLY A J, BLOOMFIELD L A. Photodesorption of alkali anions from alkali-halide cluster anions [J]. Physical Review Letters, 2003, 91(7): 073401. doi: 10.1103/PhysRevLett.91.073401
    [3] MEI A B, HELLMAN O, WIREKLINT N, et al. Dynamic and structural stability of cubic vanadium nitride [J]. Physical Review B, 2015, 91(5): 054101. doi: 10.1103/PhysRevB.91.054101
    [4] KANHAIYALAL, DIGPRATAP S. Interatomic distances for alkali halides at high pressure [J]. Computational Condensed Matter, 2024, 38: e00877. doi: 10.1016/j.cocom.2023.e00877
    [5] DEMMEL F, ALCARAZ O, TRULLAS J. Br diffusion in molten NaBr explored by coherent quasielastic neutron scattering [J]. Physical Review E, 2016, 93(4): 042604. doi: 10.1103/PhysRevE.93.042604
    [6] KUMAR P, ROY D R. Optical and thermoelectric properties of square lattice phases of alkali halide compounds [J]. Journal of Physics and Chemistry of Solids, 2023, 174: 111142. doi: 10.1016/j.jpcs.2022.111142
    [7] KUMAR P, RAJPUT K, ROY D R. Structural, vibrational, electronic, elastic and thermoelectric properties of monolayer alkali halide compounds from first principles investigation [J]. Materials Today Communications, 2021, 29: 102855. doi: 10.1016/j.mtcomm.2021.102855
    [8] KAPOOR S, SINGH S. The study of mechanical properties of lithium halides under high pressure at room temperature [J]. Solid State Communications, 2022, 341: 114574. doi: 10.1016/j.ssc.2021.114574
    [9] LAGOS M, ASENJO F, HAUYÓN R, et al. Line shapes of narrow optical bands: infrared absorption by U centers and heavier impurities in alkali halides [J]. Physical Review B, 2008, 77(10): 104305. doi: 10.1103/PhysRevB.77.104305
    [10] SAFARI M, MASKANEH P, MOGHADAM A D, et al. Lithium halide monolayers: structural, electronic and optical properties by first principles study [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83: 426–433. doi: 10.1016/j.physe.2016.01.025
    [11] HOYA J, LABORDE J I, RICHARD D, et al. Ab initio study of F-centers in alkali halides [J]. Computational Materials Science, 2017, 139: 1–7. doi: 10.1016/j.commatsci.2017.07.015
    [12] WANG J J, DENG M H, CHEN Y H, et al. Structural, elastic, electronic and optical properties of lithium halides (LiF, LiCl, LiBr, and LiI): first-principle calculations [J]. Materials Chemistry and Physics, 2020, 244: 122733. doi: 10.1016/j.matchemphys.2020.122733
    [13] 阿卜力孜·麦提图尔荪, 艾尼瓦尔·吾术尔, 谢翠焕, 等. 碳酸铅在不同传压介质下的高压拉曼研究 [J]. 高压物理学报, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813

    ABLIZ M, ANWAR H, XIE C H, et al. High pressure raman spectroscopic study of PbCO3 in different pressure transmitting medium [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
    [14] 陈炜珊, 谭毅, 谭大勇, 等. NaPO3高压结构行为的第一性原理理论研究 [J]. 高压物理学报, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755

    CHEN W S, TAN Y, TAN D Y, et al. First-principles theoretical study on the structure behaviors of NaPO3 under compression [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755
    [15] 王晓雪, 丁雨晴, 王晖. 硝酸铷高压相变和物理性质的第一性原理研究 [J]. 高压物理学报, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776

    WANG X X, DING Y Q, WANG H. First-principles study of the high-pressure phase transition and physical properties of rubidium nitrate [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
    [16] LI N N, MANOUN B, TAMRAOUI Y, et al. Structural and electronic phase transitions of Co2Te3O8 spiroffite under high pressure [J]. Physical Review B, 2019, 99(24): 245125. doi: 10.1103/PhysRevB.99.245125
    [17] COVA F, BLANCO M V, HANFLAND M, et al. Study of the high pressure phase evolution of Co3O4 [J]. Physical Review B, 2019, 100(5): 054111. doi: 10.1103/PhysRevB.100.054111
    [18] RUIZ-FUERTES J, HIRSCH A, FRIEDRICH A, et al. High-pressure phase of LaPO4 studied by X-ray diffraction and second harmonic generation [J]. Physical Review B, 2016, 94(13): 134109. doi: 10.1103/PhysRevB.94.134109
    [19] 李佐, 刘云, 廖大麟, 等. 高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究 [J]. 高压物理学报, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514

    LI Z, LIU Y, LIAO D L, et al. First-principles study on structural, electronic and optical properties of G2ZT crystal under high pressure [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
    [20] 曾阳阳, 朱刚贝, 王文涛, 等. 高压下硝酸肼结构演化的中远红外光谱和第一性原理计算研究 [J]. 高压物理学报, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804

    ZENG Y Y, ZHU G B, WANG W T, et al. Mid- and far-infrared spectroscopic and first-principles computational study of the structural evolution of hydrazine nitrate under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804
    [21] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [22] QI W M, LI P W, GAO M, et al. Mineral pressure gauge based on lattice stability and plasmonic enhancement of cobalt titanate under high pressure [J]. Physical Review B, 2023, 107(8): 085429. doi: 10.1103/PhysRevB.107.085429
    [23] QI W M, XIE C H, HUSHUR A, et al. Pressure-induced successive phase transitions and Fano resonance engineering in lead-free piezoceramics KNbO3 [J]. Applied Physics Letters, 2023, 122(23): 232901. doi: 10.1063/5.0143105
    [24] HU K G, ZHOU Z M, WEI Y W, et al. Bond ordering and phase transitions in Na2IrO3 under high pressure [J]. Physical Review B, 2018, 98(10): 100103(R).
    [25] DEMAREST JR H H, CASSELL C R, JAMIESON J C. The high pressure phase transitions in KF and RbF [J]. Journal of Physics and Chemistry of Solids, 1978, 39(11): 1211–1215. doi: 10.1016/0022-3697(78)90099-9
    [26] LOUIS C N, IYAKUTTI K. Electronic band structure and metallization of KI and RbI under high pressure [J]. Physica Status Solidi (B), 2002, 233(2): 339–350. doi: 10.1002/1521-3951(200209)233:2<339::AID-PSSB339>3.0.CO;2-6
    [27] TURNEAURE S J, GUPTA Y M, RIGG P. Shock induced phase change in KCl single crystals: orientation relations between the B1 and B2 lattices [J]. Journal of Applied Physics, 2009, 105(1): 013544. doi: 10.1063/1.3065522
    [28] KAPOOR S, GOUR A, SINGH S. Structural and elastic properties of KBr at high pressure and high temperature [J]. Phase Transitions, 2017, 90(10): 955–963. doi: 10.1080/01411594.2017.1292515
    [29] WANG H Y, HU Q K, LI C Y, et al. Phase transition, elastic, and thermodynamic properties of NaF under high pressure [J]. Phase Transitions, 2012, 85(5): 409–418. doi: 10.1080/01411594.2011.635521
    [30] HEINZ D L, JEANLOZ R. Compression of the B2 high-pressure phase of NaCl [J]. Physical Review B, 1984, 30(10): 6045–6050. doi: 10.1103/PhysRevB.30.6045
    [31] LÉGER J M, HAINES J, DANNEELS C, et al. The TlI-type structure of the high-pressure phase of NaBr and NaI: pressure-volume behaviour to 40 GPa [J]. Journal of Physics: Condensed Matter, 1998, 10(19): 4201–4210. doi: 10.1088/0953-8984/10/19/008
    [32] ZHAO Z S, ZHOU X F, WANG L M, et al. Universal phase transitions of B1-structured stoichiometric transition metal carbides [J]. Inorganic Chemistry, 2011, 50(19): 9266–9272. doi: 10.1021/ic200356x
    [33] RAO B S, SANYAL S P. Structural and elastic properties of sodium halides at high pressure [J]. Physical Review B, 1990, 42(3): 1810–1816. doi: 10.1103/PhysRevB.42.1810
    [34] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
    [35] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [36] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
    [37] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
    [38] LANGRETH D C, PERDEW J P. Theory of nonuniform electronic systems. Ⅰ. analysis of the gradient approximation and a generalization that works [J]. Physical Review B, 1980, 21(12): 5469–5493. doi: 10.1103/PhysRevB.21.5469
    [39] XIE Y Q, TAO H J, PENG H J, et al. Atomic states, potential energies, volumes, stability and brittleness of ordered fcc TiAl2 type alloys [J]. Physica B: Condensed Matter, 2005, 366(1/2/3/4): 17–37. doi: 10.1016/j.physb.2005.04.041
    [40] MAZUREK A, SZELESZCZUK Ł, PISKLAK D M. Can we predict the pressure induced phase transition of urea? application of quantum molecular dynamics [J]. Molecules, 2020, 25(7): 1584. doi: 10.3390/molecules25071584
    [41] AMRANI B, BENMESSABIH T, TAHIRI M, et al. First principles study of structural, elastic, electronic and optical properties of CuCl, CuBr and CuI compounds under hydrostatic pressure [J]. Physica B: Condensed Matter, 2006, 381(1/2): 179–186. doi: 10.1016/j.physb.2006.01.447
    [42] SAOUD F S, PLENET J C, HENINI M. Band gap and partial density of states for ZnO: under high pressure [J]. Journal of Alloys and Compounds, 2015, 619: 812–819. doi: 10.1016/j.jallcom.2014.08.069
    [43] MESSAOUDI I S, ZAOUI A, FERHAT M. Band-gap and phonon distribution in alkali halides [J]. Physica Status Solidi (B), 2015, 252(3): 490–495. doi: 10.1002/pssb.201451268
    [44] LEONI S, BOULFELFEL S E, BABURIN I A. A walk on the chemical landscape: the role of B33 along the B1–B2 phase transition in RbF and NaBr [J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2011, 637(7/8): 864–869. doi: 10.1002/zaac.201100045
    [45] DOLL K, STOLL H. Ground-state properties of heavy alkali halides [J]. Physical Review B, 1998, 57(8): 4327–4331. doi: 10.1103/PhysRevB.57.4327
    [46] BELAMEIRI N, TEBBOUNE A, MOKADDEM A, et al. Comparative study on performance and physical properties of CsI, NaI, RbI, and KBr materials [J]. Canadian Journal of Physics, 2016, 94(12): 1378–1383. doi: 10.1139/cjp-2016-0372
    [47] SIDDIQUE M, RAHMAN A U, IQBAL A, et al. A systematic first-principles investigation of structural, electronic, magnetic, and thermoelectric properties of thorium monopnictides ThPn (Pn = N, P, As): a comparative analysis of theoretical predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA+U methods [J]. International Journal of Thermophysics, 2019, 40(12): 104. doi: 10.1007/s10765-019-2572-7
    [48] ZHANG Y B, SUN J W, PERDEW J P, et al. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA [J]. Physical Review B, 2017, 96(3): 035143. doi: 10.1103/PhysRevB.96.035143
    [49] AHUJA R, ERIKSSON O, JOHANSSON B. Theoretical study of the high-pressure orthorhombic TlI-type phase in NaBr and NaI [J]. Physical Review B, 2001, 63(9): 092102. doi: 10.1103/PhysRevB.63.092102
    [50] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [51] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [52] MAO P L, YU B, LIU Z, et al. Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure: a first-principles calculation [J]. Computational Materials Science, 2014, 88: 61–70. doi: 10.1016/j.commatsci.2014.03.006
    [53] REUSS A. Berechnung der fliebgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49–58. doi: 10.1002/zamm.19290090104
    [54] PUGH S F. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
    [55] HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography [J]. Computational Materials Science, 2017, 128: 140–184. doi: 10.1016/j.commatsci.2016.10.015
    [56] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106
    [57] ZHANG C B, LI W D, ZHANG P, et al. Phase transition, elasticity, phonon spectra, and superconductive properties of equiatomic TiZr, TiHf, and ZrHf alloys at high pressure: ab initio calculations [J]. Computational Materials Science, 2020, 178: 109637. doi: 10.1016/j.commatsci.2020.109637
    [58] WANG B T, ZHANG P, LIU H Y, et al. First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium [J]. Journal of Applied Physics, 2011, 109(6): 063514. doi: 10.1063/1.3556753
    [59] MA H, ZHANG X D, LIU C, et al. Structural, elastic, anisotropic and thermodynamic properties of the caged intermetallics RETi2Al20 (RE = La, Ce, Gd and Ho): a first-principles study [J]. Solid State Sciences, 2019, 89: 121–129. doi: 10.1016/j.solidstatesciences.2018.12.023
    [60] ZHANG X D, HUANG W Y, MA H, et al. First-principles prediction of the physical properties of ThM2Al20 (M = Ti, V, Cr) intermetallics [J]. Solid State Communications, 2018, 284: 75–83. doi: 10.1016/j.ssc.2018.09.008
    [61] LASHGARI H, ABOLHASSANI M R, BOOCHANI A, et al. Ab initio study of electronic, magnetic, elastic and optical properties of full Heusler Co2MnSb [J]. Indian Journal of Physics, 2016, 90(8): 909–916. doi: 10.1007/s12648-015-0829-y
    [62] SHALMASHI K, KHOSRAVI H, BOOCHANI A, et al. Characterization of halide perovskite/titania interfaces as a function of the interlayer composition: a theoretical study [J]. Journal of Physics and Chemistry of Solids, 2020, 138: 109243. doi: 10.1016/j.jpcs.2019.109243
    [63] RIZWAN M, FARMAN M, AKGÜL A, et al. Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight [J]. Indian Journal of Physics, 2022, 96(4): 1–9. doi: 10.1007/s12648-021-02031-2
    [64] RUDYSH M Y, FEDORCHUK A O, BRIK M G, et al. Electronic, optical, and vibrational properties of an AgAlS2 crystal in a high-pressure phase [J]. Materials, 2023, 16(21): 7017. doi: 10.3390/ma16217017
    [65] SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 8828–8834. doi: 10.1103/PhysRevB.62.8828
    [66] HAO A M, YANG X C, ZHANG L X, et al. First-principles investigations on physical properties of NdN under high pressure [J]. Journal of Physics and Chemistry of Solids, 2013, 74(10): 1504–1508. doi: 10.1016/j.jpcs.2013.05.019
    [67] LI P, FAN W L, LI Y L, et al. First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride [J]. Inorganic Chemistry, 2010, 49(15): 6917–6924. doi: 10.1021/ic1004819
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  135
  • PDF下载量:  42
出版历程
  • 收稿日期:  2025-02-17
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-04-17
  • 刊出日期:  2025-08-05

目录

    /

    返回文章
    返回