水镁石的弹性波速及其对俯冲带水含量的意义

张瑞 王多君 蔡闹

张瑞, 王多君, 蔡闹. 水镁石的弹性波速及其对俯冲带水含量的意义[J]. 高压物理学报, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026
引用本文: 张瑞, 王多君, 蔡闹. 水镁石的弹性波速及其对俯冲带水含量的意义[J]. 高压物理学报, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026
ZHANG Rui, WANG Duojun, CAI Nao. Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026
Citation: ZHANG Rui, WANG Duojun, CAI Nao. Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026

水镁石的弹性波速及其对俯冲带水含量的意义

doi: 10.11858/gywlxb.20251026
基金项目: 国家自然科学基金(91958216,42430206,42374211,42474132);中央高校基本科研业务费专项资金
详细信息
    作者简介:

    张 瑞(1994-),男,博士研究生,主要从事高温高压岩石矿物弹性性质研究. E-mail:zhangrui21a@mails.ucas.ac.cn

    通讯作者:

    王多君(1974-),男,博士,教授,主要从事高温高压岩石矿物物理性质研究. E-mail:duojunwang@ucas.ac.cn

    蔡 闹(1985-),男,博士,副教授,主要从事高温高压岩石矿物弹性性质研究. E-mail:cainao@ucas.ac.cn

  • 中图分类号: O521.2

Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones

  • 摘要: 水镁石(brucite)是俯冲带水饱和橄榄岩的重要组成矿物之一,其体积分数可高达15%。研究水镁石在高压下的弹性波速,对于理解俯冲带含水橄榄岩的物质组成、速度结构以及水在深部的循环具有重要意义。以Mg(OH)2试剂为初始材料,在4 GPa、523 K的条件下热压2 h,合成了致密的多晶水镁石。在高达14 GPa的压力下,采用超声干涉法测量了水镁石的弹性波速和模量。研究发现,水镁石的弹性波速和模量随压力的增加而增大。结合地震学层析成像结果和矿物组合模型,利用Voigt-Reuss-Hill(VRH)模型,约束了日本东北俯冲带低速异常区的水含量。结果表明:俯冲板片上方地幔楔在20~40 km深度处的低速异常区水的质量分数为3.0%~10.0%,俯冲板片内部60~80 km深度处的低速异常区水的质量分数为1.0%~3.0%。

     

  • 图  (a) 热压实验组装,(b) 水镁石的背散射电子显微镜图和拉曼光谱,(c) 超声实验组装,(d) 7.8 GPa超声实验走时

    Figure  1.  (a) Assembly of hot pressing; (b) backscattered electron image and Raman spectrum of brucite; (c) assembly of ultrasonic experiment; (d) signal of travel time in the ultrasonic experiment at 7.8 GPa

    图  高压下水镁石的压缩性

    Figure  2.  Compressibility of brucite at high pressures

    图  水镁石的高压弹性波速(a)和模量(b):圆圈为本研究测量数据,实线对应有限应变拟合得到的结果,虚线为Jiang等[18]的单晶布里渊测量结果

    Figure  3.  Velocities (a) and moduli (b) of brucite at high pressures: the circle represents the data from this study and the solid line represents the results obtained by finite strain fitting; the dashed line represents the previous single-crystal Brillouin results by Jiang, et al.[18]

    图  方辉橄榄岩主要组成矿物的vPvSvP/vS(水镁石数据来自本研究,橄榄石、辉石、蛇纹石、绿泥石和滑石数据来自前人研究[2, 3, 6, 2931]

    Figure  4.  vPvS, and vP/vS of major minerals in harzburgite (Brucite is from this study, olivine, orthopyroxene, antigorite, chlorite and talc are from previous studies[2, 3, 6, 2931])

    图  日本东北俯冲带速度结构:(a)~(c)分别为日本东北俯冲带40°N处地震学层析成像的vPvSvP/vS剖面[1](黑色实线为俯冲洋壳,绿色和黑色虚线为20~40 km和60~80 km深度的低波速异常区),(d)~(f) 为20~40 km异常区vPvSvP/vS的数据分布,(g)~(i) 为60~80 km异常区vPvSvP/vS的数据分布

    Figure  5.  Velocity structure of the subduction zone in NE Japan (a)–(c) vP, vS and vP/vS profiles obtained from seismic tomography at 40°N in the subduction zone of NE Japan[1] (Black solid line represents the subducting oceanic crust, and the green dashed line and black dashed line represents the low vP and low vP/vS anomaly areas at the depth of 20–40 km and 60–80 km.); (d)–(f) is the distribution of vP, vS and vP/vS in the anomaly area at the depth of 20–40 km; (g)–(i) is the distribution of vP, vS and vP/vS in the anomaly area at the depth of 60–80 km

    图  日本东北俯冲带低速异常区的水含量:(a)~(c)为1.5 GPa和573 K条件下的结果,(e)~(f)为2.0 GPa和673 K条件下的结果(蓝色实线为地震学观测的速度范围,黑色实线和黑色虚线分别为利用VRH平均模型和矿物弹性性质计算的结果,蓝色虚线为地震学观测速度和矿物学计算速度共同约束得到的水含量)

    Figure  6.  Water content within the low-velocity anomaly zone of the subduction zone in NE Japan: (a)–(c) show the results under 1.5 GPa and 573 K; (e)–(f) present the results under 2.0 GPa and 673 K (The blue solid line represents the observed velocity by tomography. The black solid and black dashed lines represent the results calculated using the VRH average model combined with mineral elastic properties. The blue dashed line represents the water content obtained by joint constraint of seismic observation and mineralogy calculation.)

    表  1  水镁石的高压弹性性质

    Table  1.   Elastic properties of brucite at high pressures

    p/GPa ρ/(g·cm−3) $ {v}_{\mathrm{P}} $/(km·s−1) $ {v}_{\mathrm{S}} $/(km·s−1) KS/GPa G/GPa
    1.9 2.43(1) 6.35(1) 3.76(1) 52(4) 34(2)
    2.5 2.45(1) 6.53(1) 3.84(1) 56(4) 36(2)
    3.0 2.48(1) 6.71(1) 3.91(1) 61(4) 38(2)
    4.1 2.52(1) 6.97(1) 4.02(1) 68(4) 41(2)
    5.1 2.56(1) 7.20(1) 4.11(1) 75(4) 43(2)
    6.1 2.59(1) 7.43(1) 4.20(1) 82(4) 46(2)
    6.9 2.62(1) 7.59(1) 4.26(1) 87(4) 48(2)
    7.8 2.64(1) 7.76(1) 4.33(1) 93(4) 50(2)
    8.6 2.67(1) 7.92(1) 4.40(1) 98(4) 52(2)
    9.4 2.69(1) 8.03(1) 4.45(1) 102(4) 53(2)
    10.0 2.70(1) 8.13(1) 4.49(1) 106(4) 55(2)
    10.7 2.72(1) 8.26(1) 4.53(1) 111(4) 56(2)
    11.3 2.73(1) 8.38(1) 4.56(1) 116(4) 57(2)
    11.8 2.75(1) 8.47(1) 4.60(1) 119(4) 58(2)
    12.3 2.76(1) 8.55(1) 4.64(1) 122(4) 59(2)
    12.7 2.77(1) 8.62(1) 4.68(1) 125(4) 61(2)
    13.2 2.78(1) 8.68(1) 4.71(1) 127(4) 62(2)
    13.6 2.79(1) 8.75(1) 4.73(1) 130(4) 62(2)
    14.0 2.80(1) 8.81(1) 4.75(1) 133(4) 63(2)
    下载: 导出CSV

    表  2  方辉橄榄岩中主要矿物的弹性参数

    Table  2.   Elastic parameters of major minerals in harzburgite

    Minerals $ {\rho }_{0} $/(g·cm−3) KS0/GPa $ {{K}_{\rm{{S}0}}'} $ $ ({\partial {K}}_{\rm{S}}/\partial T) $/
    (GPa·K−1)
    G0/GPa $ {{G}_{0}'} $ $ (\partial G/\partial T) $/
    (GPa·K−1)
    $ {\alpha }_{0} $/(10−5 K−1) Ref.
    Brucite 2.333 40.0 7.0 −0.011 30 2.5 −0.010 5.00 This study
    Antigorite 2.56 41.0 14.1 −0.010 26.48 1.3 −0.006 3.92 [6]
    Chlorite 2.54 79.2 3.7 −0.006 47.4 −0.3 −0.003 2.50 [29]
    Amphibole 2.97 98 3.5 −0.004 62 1.15 −0.011 4.94 [41]
    Talc 2.70 56 5.4 −0.006 29 4.7 −0.005 2.61 [3]
    Olivine 3.34 130.3 4.6 −0.016 77.4 1.61 −0.013 3.03 [39]
    Orthopyroxene 3.21 108.5 7.2 −0.026 77.9 1.7 −0.013 2.97 [31, 37]
    Clinopyroxene 3.3 116.5 5.0 −0.013 72.8 1.7 −0.014 2.60 [40, 42]
    下载: 导出CSV
  • [1] TSUJI Y, NAKAJIMA J, HASEGAWA A. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: implications for water transportation in subduction zones [J]. Geophysical Research Letters, 2008, 35(14): L14308. doi: 10.1029/2008GL034461
    [2] WANG D J, WANG L B, ZHANG R, et al. Mantle wedge water contents estimated from ultrasonic laboratory measurements of olivine-antigorite aggregates [J]. Geophysical Research Letters, 2022, 49(10): e2022GL098226. doi: 10.1029/2022GL098226
    [3] CHEN P, WANG D J, CAI N, et al. Anomalous sound velocities of talc at high pressure and implications for estimating water content in mantle wedge [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(11): e2023JB027309. doi: 10.1029/2023JB027309
    [4] HACKER B R, ABERS G A, PEACOCK S M. Subduction factory 1. theoretical mineralogy, densities, seismic wave speeds, and H2O contents [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 10. doi: 10.1029/2001JB001127
    [5] BEZACIER L, REYNARD B, CARDON H, et al. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(2): 527–535. doi: 10.1002/jgrb.50076
    [6] WANG D J, LIU T, CHEN T, et al. Anomalous sound velocities of antigorite at high pressure and implications for detecting serpentinization at mantle wedges [J]. Geophysical Research Letters, 2019, 46(10): 5153–5160. doi: 10.1029/2019GL082287
    [7] CHRISTENSEN N I. Ophiolites, seismic velocities and oceanic crustal structure [J]. Tectonophysics, 1978, 47(1/2): 131–157. doi: 10.1016/0040-1951(78)90155-5
    [8] JI S C, LI A W, WANG Q, et al. Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3): 1015–1037. doi: 10.1002/jgrb.50110
    [9] WATANABE T, KASAMI H, OHSHIMA S. Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa [J]. Earth, Planets and Space, 2007, 59(4): 233–244. doi: 10.1186/BF03353100
    [10] WALTER M J, THOMSON A R, WANG W, et al. The stability of hydrous silicates in Earthʼs lower mantle: experimental constraints from the systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O [J]. Chemical Geology, 2015, 418: 16–29. doi: 10.1016/j.chemgeo.2015.05.001
    [11] FEI Y W, MAO H K. Static compression of Mg(OH)2 to 78 GPa at high temperature and constraints on the equation of state of fluid H2O [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 11875–11884. doi: 10.1029/93JB00701
    [12] CATTI M, FERRARIS G, HULL S, et al. Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study [J]. Physics and Chemistry of Minerals, 1995, 22(3): 200–206. doi: 10.1007/BF00202300
    [13] DUFFY T S, ZHA C S, DOWNS R T, et al. Elasticity of forsterite to 16 GPa and the composition of the upper mantle [J]. Nature, 1995, 378(6553): 170–173. doi: 10.1038/378170a0
    [14] XIA X, WEIDNER D J, ZHAO H. Equation of state of brucite; single-crystal Brillouin spectroscopy study and polycrystalline pressure-volume-temperature measurement [J]. American Mineralogist, 1998, 83(1/2): 68–74. doi: 10.2138/am-1998-1-207
    [15] NAGAI T, HATTORI T, YAMANAKA T. Compression mechanism of brucite: an investigation by structural refinement under pressure [J]. American Mineralogist, 2000, 85(5/6): 760–764. doi: 10.2138/am-2000-5-615
    [16] FUKUI H, OHTAKA O, SUZUKI T, et al. Thermal expansion of Mg(OH)2 brucite under high pressure and pressure dependence of entropy [J]. Physics and Chemistry of Minerals, 2003, 30(9): 511–516. doi: 10.1007/s00269-003-0353-z
    [17] SUN N Y, LI X Y, LI L, et al. Stability and physical properties of brucite at high pressures and temperatures: implication for Earth’s deep water cycle [J]. Geoscience Frontiers, 2025, 16(1): 101940. doi: 10.1016/j.gsf.2024.101940
    [18] JIANG F M, SPEZIALE S, DUFFY T S. Single-crystal elasticity of brucite, Mg(OH)2, to 15 GPa by Brillouin scattering [J]. American Mineralogist, 2006, 91(11/12): 1893–1900. doi: 10.2138/am.2006.2215
    [19] ZHANG J K, WANG D J, CAI N, et al. Elastic properties of amphibole at high pressure: a new explanation of the low velocities anomaly in the mantle wedges [J]. Tectonophysics, 2023, 865: 230044. doi: 10.1016/J.TECTO.2023.230044
    [20] ZHANG R, WANG D J, CAI N, et al. Sound velocity of eclogite at high pressures and implications for detecting eclogitization in subduction zones [J]. GSA Bulletin, 2024, 136(5/6): 2019–2028. doi: 10.1130/B37065.1
    [21] LI B S, CHEN K, KUNG J, et al. Sound velocity measurement using transfer function method [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 11337. doi: 10.1088/0953-8984/14/44/478
    [22] LI B S, ZHANG J Z. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle [J]. Physics of the Earth and Planetary Interiors, 2005, 151(1/2): 143–154. doi: 10.1016/j.pepi.2005.02.004
    [23] WANG X B, CHEN T, QI X T, et al. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus [J]. Journal of Applied Physics, 2015, 118(6): 065901. doi: 10.1063/1.4928147
    [24] CAI N, WANG D J. Sound velocity of (Mg0.91Fe0.09)2SiO4 wadsleyite and its implications to water distribution in mantle transition zone [J]. Geophysical Research Letters, 2022, 49(22): e2022GL100302. doi: 10.1029/2022GL100302
    [25] COOK R K. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements [J]. The Journal of the Acoustical Society of America, 1957, 29(4): 445–449. doi: 10.1121/1.1908922
    [26] LI B S, LIEBERMANN R C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry [J]. Physics of the Earth and Planetary Interiors, 2014, 233: 135–153. doi: 10.1016/j.pepi.2014.05.006
    [27] DAVIES G F, DZIEWONSKI A M. Homogeneity and constitution of the Earth’s lower mantle and outer core [J]. Physics of the Earth and Planetary Interiors, 1975, 10(4): 336–343. doi: 10.1016/0031-9201(75)90060-6
    [28] PEACOCK S M, WANG K L. On the stability of talc in subduction zones: a possible control on the maximum depth of decoupling between the subducting plate and mantle wedge [J]. Geophysical Research Letters, 2021, 48(17): e2021GL094889. doi: 10.1029/2021GL094889
    [29] MOOKHERJEE M, MAINPRICE D. Unusually large shear wave anisotropy for chlorite in subduction zone settings [J]. Geophysical Research Letters, 2014, 41(5): 1506–1513. doi: 10.1002/2014GL059334
    [30] ZHANG J S, BASS J D. Sound velocities of olivine at high pressures and temperatures and the composition of Earth’s upper mantle [J]. Geophysical Research Letters, 2016, 43(18): 9611–9618. doi: 10.1002/2016GL069949
    [31] KUNG J, LI B S, UCHIDA T, et al. In situ measurements of sound velocities and densities across the orthopyroxene→high-pressure clinopyroxene transition in MgSiO3 at high pressure [J]. Physics of the Earth and Planetary Interiors, 2004, 147(1): 27–44. doi: 10.1016/j.pepi.2004.05.008
    [32] PEACOCK S M, BOSTOCK M G. Serpentinization of the forearc mantle wedge in subduction zones: revisiting Roy D. Hyndman’s seminal contributions 25 years later [J]. Canadian Journal of Earth Sciences, 2025, 62(4): 758–771. doi: 10.1139/cjes-2024-0082
    [33] CONNOLLY J A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524–541. doi: 10.1016/j.jpgl.2005.04.033
    [34] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307
    [35] ABERS G A, HACKER B R. A MATLAB toolbox and excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 616–624. doi: 10.1002/2015GC006171
    [36] ZHAO Y S, VON DREELE R B, SHANKLAND T J, et al. Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction [J]. Geophysical Research Letters, 1997, 24(1): 5–8. doi: 10.1029/96GL03769
    [37] SHINMEI T, TOMIOKA N, FUJINO K, et al. In situ X-ray diffraction study of enstatite up to 12 GPa and 1 473 K and equations of state [J]. American Mineralogist, 1999, 84(10): 1588–1594. doi: 10.2138/am-1999-1012
    [38] PAWLEY A R, CLARK S M, CHINNERY N J. Equation of state measurements of chlorite, pyrophyllite, and talc [J]. American Mineralogist, 2002, 87(8/9): 1172–1182. doi: 10.2138/am-2002-8-916
    [39] LIU W, KUNG J, LI B S. Elasticity of San Carlos olivine to 8 GPa and 1 073 K [J]. Geophysical Research Letters, 2005, 32(16): L16301. doi: 10.1029/2005GL023453
    [40] ISAAK D G, OHNO I, LEE P C. The elastic constants of monoclinic single-crystal chrome-diopside to 1 300 K [J]. Physics and Chemistry of Minerals, 2006, 32(10): 691–699. doi: 10.1007/s00269-005-0047-9
    [41] ZHOU W Y, HAO M, ZHANG D Z, et al. High p-T sound velocities of amphiboles: implications for low-velocity anomalies in metasomatized upper mantle [J]. Geophysical Research Letters, 2024, 51(5): e2023GL106583. doi: 10.1029/2023GL106583
    [42] ZHAO Y S, VON DREELE R B, ZHANG J Z, et al. Thermoelastic equation of state of monoclinic pyroxene: CaMgSi2O6 diopside [J]. The Review of High Pressure Science and Technology, 1998, 7: 25–27. doi: 10.4131/jshpreview.7.25
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  578
  • HTML全文浏览量:  148
  • PDF下载量:  51
出版历程
  • 收稿日期:  2025-02-17
  • 修回日期:  2025-03-20
  • 录用日期:  2025-05-19
  • 网络出版日期:  2025-03-22
  • 刊出日期:  2025-10-05

目录

    /

    返回文章
    返回