运河开挖爆破振动作用下桥梁桩基结构的动力响应特性

何俊辉 程铁军 程晨 刘先林 蒋楠 邵羽 刘杨

何俊辉, 程铁军, 程晨, 刘先林, 蒋楠, 邵羽, 刘杨. 运河开挖爆破振动作用下桥梁桩基结构的动力响应特性[J]. 高压物理学报, 2025, 39(8): 085301. doi: 10.11858/gywlxb.20251025
引用本文: 何俊辉, 程铁军, 程晨, 刘先林, 蒋楠, 邵羽, 刘杨. 运河开挖爆破振动作用下桥梁桩基结构的动力响应特性[J]. 高压物理学报, 2025, 39(8): 085301. doi: 10.11858/gywlxb.20251025
HE Junhui, CHENG Tiejun, CHENG Chen, LIU Xianlin, JIANG Nan, SHAO Yu, LIU Yang. Dynamic Response Characteristics of Bridge Pile Foundation Structure Subjected to Blasting Vibration of Canal Excavation[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085301. doi: 10.11858/gywlxb.20251025
Citation: HE Junhui, CHENG Tiejun, CHENG Chen, LIU Xianlin, JIANG Nan, SHAO Yu, LIU Yang. Dynamic Response Characteristics of Bridge Pile Foundation Structure Subjected to Blasting Vibration of Canal Excavation[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085301. doi: 10.11858/gywlxb.20251025

运河开挖爆破振动作用下桥梁桩基结构的动力响应特性

doi: 10.11858/gywlxb.20251025
基金项目: 国家自然科学基金(42102329,52478525);湖北省自然科学基金杰出青年项目(2024AFA092);湖北省重点研发计划(2021BAD004);武汉市重点研发计划(2024050802030155)
详细信息
    作者简介:

    何俊辉(1981-),男,硕士,正高级工程师,主要从事工程建设与技术研究.E-mail:437107227@qq.com

    通讯作者:

    蒋 楠(1986-),男,博士,教授,主要从事土木工程和爆破工程研究. E-mail:jiangnan@jhun.edu.cn

  • 中图分类号: O383.2; O521.9

Dynamic Response Characteristics of Bridge Pile Foundation Structure Subjected to Blasting Vibration of Canal Excavation

  • 摘要: 爆破开挖是提升运河航道扩挖效率的重要施工方法,但其引起的爆破振动效应可能对既有水道的桥梁下部结构产生不利影响。为阐明桥梁下部结构在爆破开挖振动作用下的动力响应特性,依托平陆运河航道扩挖爆破工程,结合经现场测试验证的有限元模拟方法,分析了爆破影响下邻近桥梁下部结构的应力和振速分布特征,基于最大拉应力准则,提出了桥梁下部结构的安全振速阈值。结果表明:在运河爆破开挖振动作用下,桥梁桩基与承台交接处产生最大拉应力;下部结构振动较大的部位主要位于桩基;以承台为监测点的桥梁下部结构的安全允许振速为3.2 cm/s。

     

  • 图  现场施工示意图

    Figure  1.  Schematic diagram of site construction

    图  分层爆破开挖示意图

    Figure  2.  Schematic diagram of layered blasting excavation

    图  现场监测点布置

    Figure  3.  Layout of site monitoring point

    图  有限元整体模型

    Figure  4.  Finite element integral model

    图  等距设置9种不同爆源位置及分层爆破

    Figure  5.  Equidistant arrangement of nine different blasting source locations and layered blasting

    图  三角形等效爆破荷载

    Figure  6.  Triangular equivalent blasting load

    图  基于桩基承台质点振动时程的数值模型可靠性验证

    Figure  7.  Reliability verification of numerical model based on particle vibration time history of pile cap

    图  桥梁下部结构最大拉应力分布

    Figure  8.  Maximum tensile stress distribution of bridge substructure

    图  不同分层爆破的振动应力波

    Figure  9.  Vibration stress wave induced by different layered blasting

    图  10  桥梁下部结构最大振速分布

    Figure  10.  Maximum vibration velocity distribution of bridge substructure

    图  11  数值模拟得到的桥梁桩基结构应力云图

    Figure  11.  Numerical simulation stress cloud diagram of bridge pile foundation structure

    图  12  t=0.60 s时墩柱与承台交接处的最大应力

    Figure  12.  Maximum effective stress at the junction of pier and cap when t=0.60 s

    图  13  下部结构最大拉应力与基础监测点最大振速的关系

    Figure  13.  Relationship between the maximum tensile stress of the substructure and the maximum vibration velocity of the foundation monitoring point

    表  1  工程爆破设计方案

    Table  1.   Engineering blasting design scheme

    Layer Total number of
    blasts conducted
    Blasting
    elevation/m
    Total blasting
    area/m2
    Single blasting
    area/m2
    Single blasting
    volume/m3
    1 15 13.0−19.0 18 184 1 200 7 200
    2 13 7.0−13.0 16 386 1 150 6 800
    2 13 1.4−7.0 15 360 1 000 6 000
    下载: 导出CSV

    表  2  台阶爆破参数

    Table  2.   Parameters of bench blasting

    Step
    height/m
    Dip angle/
    (°)
    Deep/m Borehole
    length/m
    Hole
    spacing/m
    Row
    spacing/m
    Charge per blast hole/kg Charge
    length/m
    Stemming
    length/m
    Front row Back row
    6 90 0.6 6.6 3.0 2.5 13.5 15.0 3.6 3.0
    下载: 导出CSV

    表  3  监测点爆破峰值振动速度与主频

    Table  3.   Peak particle velocity and dominant frequency of monitoring points

    Working conditionMeasuring point positionv/(cm·s−1)f/Hz
    xyzxyz
    1Left bank0.0600.0300.01413.7014.5512.86
    2Right bank0.0430.0230.03317.549.5920.62
    下载: 导出CSV

    表  4  各材料的物理力学参数

    Table  4.   Physical and mechanical parameters of each material

    Materials ρ/(g·cm−3) E/GPa μ σY/MPa $ \varphi $/(°) c/kPa
    Concrete 2.4 30 0.20 20
    Steel 7.9 210 0.25 235
    Silt clay 1.8 5 0.35 20 20
    Fully weathered silty mudstone 2.0 0.5 0.35 25 30
    Strongly weathered silty mudstone 2.2 3 0.30 30 100
    Medium weathered silty mudstone 2.4 10 0.25 35 200
    下载: 导出CSV

    表  5  数值计算和监测点A的现场实验数据

    Table  5.   Numerical simulation results and field monitoring data for monitoring point A

    vx vy vz
    Exp./(cm·s−1) Sim./(cm·s−1) δx/% Exp./(cm·s−1) Sim./(cm·s−1) δy/% Exp./(cm·s−1) Sim./(cm·s−1) δz/%
    0.060 0.065 7.6 0.030 0.034 11.7 0.014 0.016 12.5
    下载: 导出CSV

    表  6  多种爆源振动影响下下部结构的最大拉应力和最大振速

    Table  6.   Maximum tensile stress and maximum vibration velocity of substructure under multiple blasting source vibrations

    d/m σt,max/MPa vmax/(cm·s−1) d/m σt,max/MPa vmax/(cm·s−1) d/m σt,max/MPa vmax/(cm·s−1)
    −200 0.048 0.10 −50 0.310 0.80 100 0.130 0.35
    −150 0.052 0.20 0 0.642 1.39 150 0.053 0.22
    −100 0.132 0.38 50 0.276 0.67 200 0.049 0.12
    下载: 导出CSV
  • [1] 梁轩. 考虑动水作用和冲刷效应的深水桥梁桩基地震动力响应研究 [D]. 上海: 同济大学, 2022.

    LIANG X. Seismic analysis of deep water bridge pile foundation considering hydrodynamic pressure and scour effect [D]. Shanghai: Tongji University, 2022.
    [2] 胡春林, 杨小卫. 上部结构刚度对桩基地震动力响应的影响 [J]. 土工基础, 2007, 21(2): 21–24. doi: 10.3969/j.issn.1004-3152.2007.02.008

    HU C L, YANG X W. Influence of seisimic responseon pile due to stiffness variation of superstructure [J]. Soil Engineering and Foundation, 2007, 21(2): 21–24. doi: 10.3969/j.issn.1004-3152.2007.02.008
    [3] 罗川, 占昌宝, 楼云锋, 等. 地震激励下桩-土非线性耦合作用对桩基动力响应特性的影响 [J]. 振动与冲击, 2017, 36(3): 20–26. doi: 10.13465/j.cnki.jvs.2017.03.004

    LUO C, ZHAN C B, LOU Y F, et al. Effects of pile-soil nonlinear coupling actions on dynamic response features of pile foundation under earthquake [J]. Journal of Vibration and Shock, 2017, 36(3): 20–26. doi: 10.13465/j.cnki.jvs.2017.03.004
    [4] YAO A J, ZHANG J T, ZHOU Y J. Study on the dynamic response of the steel pipe pile foundation during construction of neighborhood deep excavation [J]. Procedia Engineering, 2016, 165: 58–68. doi: 10.1016/j.proeng.2016.11.735
    [5] 陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答 [J]. 岩土工程学报, 2014, 36(6): 1057–1063. doi: 10.11779/CJGE201406010

    CHEN H B, LIANG F Y. Simplified boundary element method for lateral vibration response of pile groups in frequency domain [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1057–1063. doi: 10.11779/CJGE201406010
    [6] 王文剑, 楼梦麟, 马恒春, 等. 上部结构对桩基础地震应力影响的模型试验研究 [J]. 地震工程与工程振动, 2001, 21(2): 103–108. doi: 10.3969/j.issn.1000-1301.2001.02.019

    WANG W J, LOU M L, MA H C, et al. Study on efffects of superstructure on pile foundation seismic stresses by model test [J]. Earthquake Engineering and Engineering Dynamics, 2001, 21(2): 103–108. doi: 10.3969/j.issn.1000-1301.2001.02.019
    [7] 夏宇磬. 城区钻爆法隧道爆破邻近桩基振动效应研究 [D]. 武汉: 中国地质大学, 2023.

    XIA Y Q. Dynamic behavior of pile foundations subjected to urban subway tunnel blasting excavation [D]. Wuhan: China University of Geosciences, 2023.
    [8] HUANG W H, LIU J K, WANG H, et al. Study on dynamic response of inclined pile group foundation under earthquake action [J]. Buildings, 2023, 13(10): 2416. doi: 10.3390/BUILDINGS13102416
    [9] LIANG W W, LENG L Y, TIAN H, et al. Nonlinear numerical simulation of dynamic response of pile site and pile foundation under earthquake [J]. Nonlinear Engineering, 2022, 11(1): 485–493. doi: 10.1515/nleng-2022-0228
    [10] 尹平保, 陆帆, 贺炜, 等. 考虑斜坡效应的桥梁桩基动力响应特性及地震易损性分析 [J]. 土木工程学报, 2025, 58(7): 66–76.

    YIN P B, LU F, HE W, et al. Dynamic response characteristics and seismic fragility analysis of bridge pile foundation considering of slope effect [J]. China Civil Engineering Journal, 2025, 58(7): 66–76.
    [11] HUANG Y, CHEN X G, CHENG L J, et al. Dynamic response analysis of pile group foundation of super-giant sewage treatment structure on hydraulic fill foundation [J]. Shock and Vibration, 2022, 2022(1): 1440477. doi: 10.1155/2022/1440477
    [12] MESSIOUD S, DIAS D, SBARTAI B. Influence of the pile toe condition on the dynamic response of a group of pile foundations [J]. International Journal of Advanced Structural Engineering, 2019, 11(1): 55–66. doi: 10.1007/s40091-019-0217-5
    [13] WEN H, JIE C, QIAN S, et al. Dynamic response of cross-sea bridge pile foundation under the coaction of wave and current [J]. International Journal of Earth Sciences and Engineering, 2016, 9(4): 1383–1387.
    [14] 王福兴, 张宾, 曹寰宇, 等. 敏感条件下隧道爆破施工中邻近桩基的振动响应分析 [J]. 煤矿爆破, 2024, 42(4): 12–18. doi: 10.3969/j.issn.1674-3970.2024.04.003

    WANG F X, ZHANG B, CAO H Y, et al. Vibration response analysis of adjacent pile foundations during tunnel blasting construction under sensitive conditions [J]. Coal Mine Blasting, 2024, 42(4): 12–18. doi: 10.3969/j.issn.1674-3970.2024.04.003
    [15] 刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应 [J]. 交通运输工程学报, 2018, 18(4): 53–62. doi: 10.19818/j.cnki.1671-1637.2018.04.006

    LIU C, FENG Z J, ZHANG F Q, et al. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action [J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53–62. doi: 10.19818/j.cnki.1671-1637.2018.04.006
    [16] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. doi: 10.3969/j.issn.1001-1455.2012.02.007

    YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. doi: 10.3969/j.issn.1001-1455.2012.02.007
    [17] 姚金宝. 露天矿山开采逐孔爆破总装药量大小对爆破振动影响的研究 [J]. 煤矿爆破, 2023, 41(3): 31–34. doi: 10.3969/j.issn.1674-3970.2023.03.006

    YAO J B. Study on the effect of total charge amount of hole-by-hole blasting on blasting vibration in open-pit mining [J]. Coal Mine Blasting, 2023, 41(3): 31–34. doi: 10.3969/j.issn.1674-3970.2023.03.006
    [18] 梁悦. 不同爆破方式下地下洞室围岩动态响应的数值计算分析 [D]. 南京: 东南大学, 2022.

    LIANG Y. Numerical analysis of dynamic response of underground cavern surrounding rock masses under different blasting parameters [D]. Nanjing: Southeast University, 2022.
    [19] 易长平. 爆破振动对地下洞室的影响研究 [D]. 武汉: 武汉大学, 2005.

    YI C P. The influence of blasting vibration on underground chambers [D]. Wuhan: Wuhan University, 2005.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  120
  • PDF下载量:  62
出版历程
  • 收稿日期:  2025-02-15
  • 修回日期:  2025-03-11
  • 录用日期:  2025-05-15
  • 网络出版日期:  2025-03-17
  • 刊出日期:  2025-08-05

目录

    /

    返回文章
    返回