基于神经网络的硬化水泥浆体等效强度预测

宋敏 杨予舒 祝华杰 王志勇

宋敏, 杨予舒, 祝华杰, 王志勇. 基于神经网络的硬化水泥浆体等效强度预测[J]. 高压物理学报. doi: 10.11858/gywlxb.20251024
引用本文: 宋敏, 杨予舒, 祝华杰, 王志勇. 基于神经网络的硬化水泥浆体等效强度预测[J]. 高压物理学报. doi: 10.11858/gywlxb.20251024
SONG Min, YANG Yushu, ZHU Huajie, WANG Zhiyong. Prediction of Equivalent Strength of Hydrated Cement Paste Based on Neural Networks[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251024
Citation: SONG Min, YANG Yushu, ZHU Huajie, WANG Zhiyong. Prediction of Equivalent Strength of Hydrated Cement Paste Based on Neural Networks[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251024

基于神经网络的硬化水泥浆体等效强度预测

doi: 10.11858/gywlxb.20251024
基金项目: 国家自然科学基金(12272257);山西省基础研究计划青年项目(202303021222387,202403021222519)
详细信息
    作者简介:

    宋 敏(1991-),男,博士,工程师,主要从事桥梁工程结构优化设计与应用研究. E-mail:songmin595@163.com

    通讯作者:

    王志勇(1982-),男,博士,教授,主要从事冲击动力学与断裂力学研究. E-mail:wangzhiyong@tyut.edu.cn

  • 中图分类号: O346; O521.9

Prediction of Equivalent Strength of Hydrated Cement Paste Based on Neural Networks

  • 摘要: 为实现材料性能优化并保障工程结构安全,需要研究具有复杂结构的水泥水化模型的力学性能。为此,考察了水灰比及各相体积分数对水泥浆体等效力学性能的影响,提出了一种基于数据驱动的模型,用于预测水化水泥结构的力学性能。通过HYMOSTRUC 3D软件生成波特兰硬化水泥浆体三维结构切片,基于Python编写的批处理程序,将切片批量转换为ABAQUS模型。通过拉伸仿真模拟,得到结构的等效弹性性能和等效强度,运用数据驱动方法建立反向传播预测模型。模型的超参数优化采用K折交叉验证方法,以提高模型的泛化能力。最终训练得到的神经网络模型能够准确预测水泥水化结构的力学性能,显著降低传统分析方法在材料微观尺度研究中的复杂性。研究结果为水泥基材料的性能预测提供了一种高效且可靠的解决方案。

     

  • 图  边界条件示意图

    Figure  1.  Schematic diagram of boundary condition

    图  不同水灰比条件下部分试件的应力-应变曲线

    Figure  2.  Stress-strain curves of specimens at different water-to-cement ratios

    图  不同水灰比试件单元的损伤分布

    Figure  3.  Damage distribution in specimen units at different water-to-cement ratios

    图  神经网络示意图

    Figure  4.  Schematic diagram of neural network

    图  4折交叉验证示意图

    Figure  5.  4-fold cross-validation diagram

    图  模型训练进程

    Figure  6.  Model training process

    图  测试集预测回归曲线

    Figure  7.  Prediction regression plots for the test set

    图  SHAP蜂群图

    Figure  8.  SHAP swarm plots

    图  SHAP平均值条形图

    Figure  9.  Bar plots of the average of SHAP

    表  1  水泥的化学组分(质量分数)

    Table  1.   Each chemical component in cement (mass fraction) %

    CaO SiO2 Al2O3 Fe2O3 SO3 MgO Others
    65.24 21.12 5.34 4.63 1.58 1.25 0.84
    下载: 导出CSV

    表  2  不同水灰比HCP中各组分的平均体积分数

    Table  2.   Average volume fraction of each component for HCP with different water-to-cement ratios

    rVolume fraction/%
    LDPHDPPoreAnhydrous
    0.37549.843924.432410.925614.7981
    0.40048.613723.987012.913514.4858
    0.42548.004223.935614.720913.3585
    0.45046.834423.491917.153312.5203
    0.47545.572123.307019.809011.3119
    0.50044.910123.136321.129410.8241
    下载: 导出CSV

    表  3  HCP各成分的力学参数

    Table  3.   Mechanical parameters of each component in HCP

    ComponentYoung’s modulus/GPaTensile strength/MPaPoisson’s ratio
    HDP31.6920.2
    LDP25.2660.2
    Anhydrous99.26830.2
    Pore1×10−60
    下载: 导出CSV
  • [1] WU X G, ZHENG S Y, FENG Z B, et al. Prediction of the frost resistance of high-performance concrete based on RF-REF: a hybrid prediction approach [J]. Construction and Building Materials, 2022, 333: 127132. doi: 10.1016/j.conbuildmat.2022.127132
    [2] GUO F Q, ZHANG Z H, YANG Z J. A continuous hydration model for cement paste with realistic CT image-based particles and simulation of microstructural evolution [J]. Cement and Concrete Research, 2024, 184: 107607. doi: 10.1016/j.cemconres.2024.107607
    [3] NGUYEN-TUAN L, KLEINER F, RÖBLER C, et al. Numerical simulation of model cement hydration using level set based method [J]. Cement and Concrete Research, 2024, 186: 107674. doi: 10.1016/j.cemconres.2024.107674
    [4] BENTZ D P. Three-dimensional computer simulation of Portland cement hydration and microstructure development [J]. Journal of the American Ceramic Society, 1997, 80(1): 3–21. doi: 10.1111/j.1151-2916.1997.tb02785.x
    [5] VAN BREUGEL K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (Ⅰ) theory [J]. Cement and Concrete Research, 1995, 25(2): 319–331. doi: 10.1016/0008-8846(95)00017-8
    [6] 曹秀丽, 刘元寿, 张红飞, 等. 水泥水化计算机模拟研究进展 [J]. 材料导报, 2013, 27(1): 157–160. doi: 10.3969/j.issn.1005-023X.2013.01.032

    CAO X L, LIU Y S, ZHANG H F, et al. A review on computer simulation of cement hydration models [J]. Materials Review, 2013, 27(1): 157–160. doi: 10.3969/j.issn.1005-023X.2013.01.032
    [7] QIAN Z W. Multiscale modeling of fracture processes in cementitious materials [D]. Delft: Delft University of Technology, 2012.
    [8] YU P, REN Z Y, CHEN Z, et al. A multiscale finite element model for prediction of tensile strength of concrete [J]. Finite Elements in Analysis and Design, 2023, 215: 103877. doi: 10.1016/j.finel.2022.103877
    [9] SHERZER G, GAO P, SCHLANGEN E, et al. Upscaling cement paste microstructure to obtain the fracture, shear, and elastic concrete mechanical LDPM parameters [J]. Materials, 2017, 10(3): 242. doi: 10.3390/ma10030242
    [10] QIAN Z W, SCHLANGEN E, YE G, et al. Modeling framework for fracture in multiscale cement-based material structures [J]. Materials, 2017, 10(6): 587. doi: 10.3390/ma10060587
    [11] KAMALI-BERNARD S, BERNARD F. Effect of tensile cracking on diffusivity of mortar: 3D numerical modelling [J]. Computational Materials Science, 2009, 47(1): 178–185. doi: 10.1016/j.commatsci.2009.07.005
    [12] HLOBIL M, KUMPOVÁ I, HLOBILOVÁ A. Surface area and size distribution of cement particles in hydrating paste as indicators for the conceptualization of a cement paste representative volume element [J]. Cement and Concrete Composites, 2022, 134: 104798. doi: 10.1016/j.cemconcomp.2022.104798
    [13] PUTTBACH C, PRINZ G S, MURRAY C D. Estimation of cement paste stiffness and UHPC elastic modulus through measured phase-property upscaling [J]. Cement, 2024, 17: 100110. doi: 10.1016/j.cement.2024.100110
    [14] LE V T, BUI H H, NGUYEN G D, et al. Meso to macro connections to capture fatigue damage in cemented materials [J]. International Journal of Fatigue, 2023, 176: 107890. doi: 10.1016/j.ijfatigue.2023.107890
    [15] 巨凯萱, 赵婷婷, 刘嘉英, 等. 级配对颗粒材料力学特性影响的卷积神经网络分析 [J]. 中国科学: 技术科学, 2025, 55(1): 115–132. doi: 10.1360/SST-2024-0187

    JU K X, ZHAO T T, LIU J Y, et al. Convolution neural network analysis of the effect of gradation on the mechanical properties of granular materials [J]. Scientia Sinica Technologica, 2025, 55(1): 115–132. doi: 10.1360/SST-2024-0187
    [16] MURR J, ALAM S Y, GRONDIN F. Micromechanics and microstructure based machine learning approach: unveiling the role of porosity and hydrated phases on the tensile behaviour of cement pastes [J]. Engineering Fracture Mechanics, 2024, 312: 110613. doi: 10.1016/j.engfracmech.2024.110613
    [17] KIM J, LEE D, UBYSZ A. Comparative analysis of cement grade and cement strength as input features for machine learning-based concrete strength prediction [J]. Case Studies in Construction Materials, 2024, 21: e03557. doi: 10.1016/j.cscm.2024.e03557
    [18] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 5001—2010 [S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB/T 5001—2010 [S]. Beijing: China Architecture & Building Press, 2011.
    [19] ZHANG H Z, ŠAVIJA B, FIGUEIREDO S C, et al. Microscale testing and modelling of cement paste as basis for multi-scale modelling [J]. Materials, 2016, 9(11): 907. doi: 10.3390/ma9110907
    [20] 卢振宇, 李文彬, 姚文进, 等. 不同应变率下两种岩石的压缩破碎特征试验研究 [J]. 高压物理学报, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605

    LU Z Y, LI W B, YAO W J, et al. Experimental study on compression and fracture characteristics of two kinds of rocks under different strain rates [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605
    [21] 马昊, 陈美多, 袁良柱, 等. 中等应变率下纸蜂窝结构的力学性能研究 [J]. 高压物理学报, 2024, 38(4): 044104. doi: 10.11858/gywlxb.20240701

    MA H, CHEN M D, YUAN L Z, et al. Study on mechanical properties of paper honeycomb structure at medium strain rates [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044104. doi: 10.11858/gywlxb.20240701
    [22] 洛绒邓珠, 刘潇如, 杨佳, 等. 不同应变率下高强钢的拉伸行为及力学性能分析 [J]. 高压物理学报, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702

    LUORONG D Z, LIU X R, YANG J, et al. Tensile behavior and mechanical performance analysis of high-strength steels at varying strain rates [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702
    [23] 张春春, 王艳超, 黄争鸣. 横观各向同性基体复合材料的等效弹性常数 [J]. 应用数学和力学, 2018, 39(7): 750–765. doi: 10.21656/1000-0887.380267

    ZHANG C C, WANG Y C, HUANG Z M. Effective elastic properties of transversely isotropic matrix based composites [J]. Applied Mathematics and Mechanics, 2018, 39(7): 750–765. doi: 10.21656/1000-0887.380267
    [24] 朱俊, 桂林, 李果, 等. 基于结构参数的平纹机织复合材料等效弹性性能预测 [J]. 复合材料学报, 2023, 40(2): 804–813. doi: 10.13801/j.cnki.fhclxb.20220424.004

    ZHU J, GUI L, LI G, et al. Prediction of the effective elastic properties for plain woven fabric composite based on the structural parameters [J]. Acta Materiae Compositae Sinica, 2023, 40(2): 804–813. doi: 10.13801/j.cnki.fhclxb.20220424.004
    [25] 顾春苗, 刘冠琳, 周风华, 等. 人造结石的静动态巴西劈裂试验研究 [J]. 高压物理学报, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738

    GU C M, LIU G L, ZHOU F H, et al. Study on static and dynamic Brazilian splitting test of artificial stones [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  20
  • PDF下载量:  7
出版历程
  • 收稿日期:  2025-02-14
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-04-20

目录

    /

    返回文章
    返回