高压偶联反应合成铂族金属氮化物OsNx

刘德璞 张恒源 陶雨 贾旭 张瑞柯 贺端威 雷力

刘德璞, 张恒源, 陶雨, 贾旭, 张瑞柯, 贺端威, 雷力. 高压偶联反应合成铂族金属氮化物OsNx[J]. 高压物理学报, 2025, 39(6): 060101. doi: 10.11858/gywlxb.20251020
引用本文: 刘德璞, 张恒源, 陶雨, 贾旭, 张瑞柯, 贺端威, 雷力. 高压偶联反应合成铂族金属氮化物OsNx[J]. 高压物理学报, 2025, 39(6): 060101. doi: 10.11858/gywlxb.20251020
LIU Depu, ZHANG Hengyuan, TAO Yu, JIA Xu, ZHANG Ruike, HE Duanwei, LEI Li. Synthesis of Platinum-Group Metal Nitride OsNx through High-Pressure Coupling Reaction[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 060101. doi: 10.11858/gywlxb.20251020
Citation: LIU Depu, ZHANG Hengyuan, TAO Yu, JIA Xu, ZHANG Ruike, HE Duanwei, LEI Li. Synthesis of Platinum-Group Metal Nitride OsNx through High-Pressure Coupling Reaction[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 060101. doi: 10.11858/gywlxb.20251020

高压偶联反应合成铂族金属氮化物OsNx

doi: 10.11858/gywlxb.20251020
基金项目: 国家自然科学基金(U2030107);中央高校基本科研业务费专项资金(2020SCUNL107)
详细信息
    作者简介:

    刘德璞(1993-),男,硕士研究生,主要从事过渡金属氮化物高压合成研究. E-mail:1041561733@qq.com

    通讯作者:

    雷 力(1980-),男,博士,研究员,主要从事高压物理与化学研究. E-mail:lei@scu.edu.cn

  • 中图分类号: O521.2

Synthesis of Platinum-Group Metal Nitride OsNx through High-Pressure Coupling Reaction

  • 摘要: 铂族金属氮化物是一类新型超不可压缩超硬材料,通常借助激光加热金刚石压砧(laser-heated diamond anvil cell,LHDAC)技术,通过单质元素化合反应法(A+B=AB)在高温高压下(2000 K、高于45 GPa)合成,探索有效降低合成压力的非常规化学合成方法对于开发和利用铂族金属(platinum-group metals,PGM)氮化物具有重要意义。以Fe2O3/Co2O3、h-BN、Os粉为反应前驱体,在大腔体压机提供的高温高压(18002100 K、15 GPa)条件下,首次通过新型高压偶联(high-pressure coupling,HPC)反应合成了OsNx(0.16≤x≤0.38)。HPC反应合成出的金属块状产物一般为OsNx与铁基氮化物复合的块体合金,利用微区X射线衍射、扫描电子显微镜对块状合金产物进行物相和结构表征,结果显示,HPC反应可以在远低于高压单质元素化合反应所需50 GPa压力阈值的条件下合成理论预测的六方OsN2结构的OsNx(空间群为P63/mmc),N原子在Os晶体内部分占据晶格的间隙位。HPC反应能够有效降低金属Os氮化的能量势垒,形成非化学计量比的OsNx化合物,为在低压条件下制备铂族金属氮化物块体材料开辟了一条新的合成途径。

     

  • 图  (a) 混合前驱体的制备流程,(b) 实验组装,(c) 高温高压实验流程

    Figure  1.  (a) Preparation process of the mixed precursor; (b) experimental assembly; (c) high-temperature and high-pressure experimental procedure

    图  实验1 (a~c)、实验2 (d~f)、实验3 (g~i)所获得的合金块体的SEM图像及EDX面扫描元素分布图像(插图为块体合金产物的光学照片)

    Figure  2.  SEM images and EDX elemental mapping of bulk alloy products obtained in Exp. 1 (a−c), Exp. 2 (d−f), and Exp. 3 (g−i) (The insets are optical photographs of the bulk alloy products)

    图  实验1 (a)、实验2 (b)、实验3 (c)中块状合金产物的XRD谱及实验2中块状合金产物的XRD精修谱(d)

    Figure  3.  XRD patterns of the bulk alloy products obtained from Exp. 1 (a), Exp. 2 (b) and Exp. 3 (c); the refined XRD pattern of the bulk alloy product obtained from Exp. 2 (d)

    图  Os[21]、OsN2(计算结构)[14]、N原子非化学计量比OsNx的晶体结构示意图

    Figure  4.  Schematic crystal structures of Os[21], OsN2 (computational structure)[14], and OsNx of non-stoichiometric ratio with N atoms

    图  HPC反应合成OsNx的原理示意图

    Figure  5.  Schematic diagram illustrating the principle of OsNx synthesis via the HPC reaction

    表  1  典型实验的前驱体、温度压力条件及块体合金产物的能谱元素分析结果

    Table  1.   Precursors, temperature-pressure conditions, and EDX analysis results of bulk alloy products in typical experiments

    Exp. No.Precursorsp/GPaT/KAtom fraction in the light area/%Atom fraction in the gray area/%
    OsNFeCoN
    13Fe2O3, 6BN, Os15180078.6121.3965.4934.61
    23Co2O3, 6BN, Os15210072.4127.5974.7125.29
    33Fe2O3, 3Co2O3, 12BN, Os15180077.3412.6626.8145.8127.38
    下载: 导出CSV

    表  2  Os、OsN2和OsN0.38的晶胞参数对比

    Table  2.   Comparison of unit cell parameters for Os, OsN2, and OsN0.38

    Os/Os nitrides Space group a c V3 Method Ref.
    Os P63/mmc 2.7013(7) 4.2726(4) 27.0002(1) XRD [21]
    OsN2 P63/mmc 3.03087 7.44002 59.1887 FPLAPW [14]
    OsN0.38 P63/mmc 2.7082 4.2862 27.2247(2) XRD This work
    Note: FPLAPW means full potential linearized augmented plane wave.
    下载: 导出CSV
  • [1] WEILAND R, LUPTON D F, FISCHER B, et al. High-temperature mechanical properties of the platinum group metals: properties of pure iridium at high temperature [J]. Platinum Metals Review, 2006, 50(4): 158–170. doi: 10.1595/147106706X154198
    [2] GUNN G. Platinum-group metals [M]//GUNN G. Critical Metals Handbook. Hoboken: Wiley, 2014: 284–311.
    [3] IVANOVSKII A L. Platinum group metal nitrides and carbides: synthesis, properties and simulation [J]. Russian Chemical Reviews, 2009, 78(4): 303–318. doi: 10.1070/RC2009v078n04ABEH004036
    [4] CHEN W, TSE J S, JIANG J Z. An ab initio study of 5d noble metal nitrides: OsN2, IrN2, PtN2 and AuN2 [J]. Solid State Communications, 2010, 150(3/4): 181–186. doi: 10.1016/j.ssc.2009.10.029
    [5] YU R, ZHAN Q, ZHANG X F. Elastic stability and electronic structure of pyrite type PtN2: a hard semiconductor [J]. Applied Physics Letters, 2006, 88(5): 051913. doi: 10.1063/1.2168683
    [6] YOUNG A F, SANLOUP C, GREGORYANZ E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15): 155501. doi: 10.1103/PhysRevLett.96.155501
    [7] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al. Synthesis and characterization of a binary noble metal nitride [J]. Nature Materials, 2004, 3(5): 294–297. doi: 10.1038/nmat1115
    [8] FU H Z, LIU W F, PENG F, et al. Theoretical investigations of structural, elastic and thermodynamic properties for PtN2 under high pressure [J]. Physica B: Condensed Matter, 2009, 404(1): 41–46. doi: 10.1016/j.physb.2008.10.001
    [9] CROWHURST J C, GONCHAROV A F, SADIGH B, et al. Synthesis and characterization of the nitrides of platinum and iridium [J]. Science, 2006, 311(5765): 1275–1278. doi: 10.1126/science.1121813
    [10] CHEN Z W, GUO X J, LIU Z Y, et al. Crystal structure and physical properties of OsN2 and PtN2 in the marcasite phase [J]. Physical Review B, 2007, 75(5): 054103. doi: 10.1103/physrevb.75.054103
    [11] LI Y W, MA Y M. Crystal structure and physical properties of OsN: first-principle calculations [J]. Solid State Communications, 2010, 150(15/16): 759–762. doi: 10.1016/j.ssc.2010.01.026
    [12] ZHAO W J, XU H B, WANG Y X. A hard semiconductor OsN4 with high elastic constant c44 [J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2009, 3(7/8): 272–274. doi: 10.1002/pssr.200903252
    [13] ZHENG J C. Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN [J]. Physical Review B, 2005, 72(5): 052105. doi: 10.1103/PhysRevB.72.052105
    [14] SOTO G. Computational study of Hf, Ta, W, Re, Ir, Os and Pt pernitrides [J]. Computational Materials Science, 2012, 61: 1–5. doi: 10.1016/j.commatsci.2012.03.056
    [15] LEI L, HE D W. Synthesis of GaN crystals through solid-state metathesis reaction under high pressure [J]. Crystal Growth & Design, 2009, 9(3): 1264–1266. doi: 10.1021/cg801017h
    [16] LEI L, ZHANG L L. Recent advance in high-pressure solid-state metathesis reactions [J]. Matter and Radiation at Extremes, 2018, 3(3): 95–103. doi: 10.1016/j.mre.2017.12.003
    [17] 高上攀, 雷力, 胡启威, 等. 三元铁基金属氮化物的高压复分解反应合成 [J]. 高压物理学报, 2016, 30(4): 265–270. doi: 10.11858/gywlxb.2016.04.001

    GAO S P, LEI L, HU Q W, et al. High-pressure solid-state metathesis synthesis of ternary iron-based metal nitrides [J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265–270. doi: 10.11858/gywlxb.2016.04.001
    [18] LEI L, YIN W W, JIANG X D, et al. Synthetic route to metal nitrides: high-pressure solid-state metathesis reaction [J]. Inorganic Chemistry, 2013, 52(23): 13356–13362. doi: 10.1021/ic4014834
    [19] ZHANG H Y, WU B B, LIU J Y, et al. High-pressure coupling reactions to produce a spherical bulk RexN/Fe3N composite [J]. Inorganic Chemistry, 2023, 62(16): 6263–6273. doi: 10.1021/acs.inorgchem.2c04089
    [20] OHFUJI H, YAMAMOTO M. EDS quantification of light elements using osmium surface coating [J]. Journal of Mineralogical and Petrological Sciences, 2015, 110(4): 189–195. doi: 10.2465/jmps.141126
    [21] GODWAL B K, YAN J, CLARK S M, et al. High-pressure behavior of osmium: an analog for iron in Earth’s core [J]. Journal of Applied Physics, 2012, 111(11): 112608. doi: 10.1063/1.4726203
    [22] WU B B, ZHANG F, HU Q W, et al. The effect of interstitial-site nitrogen on structural, elastic, and magnetic properties of face-center cubic Co [J]. Journal of Applied Physics, 2021, 129(10): 105901. doi: 10.1063/5.0037917
    [23] PATEL N N, SUNDER M. High pressure melting curve of osmium up to 35 GPa [J]. Journal of Applied Physics, 2019, 125(5): 055902. doi: 10.1063/1.5045823
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  34
  • PDF下载量:  27
出版历程
  • 收稿日期:  2025-01-23
  • 修回日期:  2025-03-31
  • 网络出版日期:  2025-04-01
  • 刊出日期:  2025-06-05

目录

    /

    返回文章
    返回