6061铝电磁膨胀环的动态断裂应变统计规律

蔡周峰 江燕 张豪 刘明涛

蔡周峰, 江燕, 张豪, 刘明涛. 6061铝电磁膨胀环的动态断裂应变统计规律[J]. 高压物理学报, 2025, 39(9): 094102. doi: 10.11858/gywlxb.20251010
引用本文: 蔡周峰, 江燕, 张豪, 刘明涛. 6061铝电磁膨胀环的动态断裂应变统计规律[J]. 高压物理学报, 2025, 39(9): 094102. doi: 10.11858/gywlxb.20251010
CAI Zhoufeng, JIANG Yan, ZHANG Hao, LIU Mingtao. Statistical Law of Dynamic Fracture Strain Distribution of 6061 Aluminum Electromagnetic Expansion Ring[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 094102. doi: 10.11858/gywlxb.20251010
Citation: CAI Zhoufeng, JIANG Yan, ZHANG Hao, LIU Mingtao. Statistical Law of Dynamic Fracture Strain Distribution of 6061 Aluminum Electromagnetic Expansion Ring[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 094102. doi: 10.11858/gywlxb.20251010

6061铝电磁膨胀环的动态断裂应变统计规律

doi: 10.11858/gywlxb.20251010
基金项目: 国家自然科学基金(12202422,11932018,12072332)
详细信息
    作者简介:

    蔡周峰(1999-),男,硕士研究生,主要从事材料与结构的动态断裂研究. E-mail:caizhoufeng22@gscaep.ac.cn

    通讯作者:

    刘明涛(1986-),男,博士,研究员,主要从事材料与结构的动态断裂研究. E-mail:lmt2005@mail.ustc.edu.cn

  • 中图分类号: O521.2; O346.1

Statistical Law of Dynamic Fracture Strain Distribution of 6061 Aluminum Electromagnetic Expansion Ring

  • 摘要: 研究延性金属环在动态加载下的断裂应变分布规律具有重要意义,电磁膨胀环装置是常用的实验加载手段。然而,目前实验上缺乏有效的原位观测技术,无法获得高精度的断裂应变统计数据。为此,将新研制的密排光子多普勒测速仪阵列应用于电磁膨胀环实验,获得了大量高置信度的断裂应变实验数据;通过硬度测量获得了材料屈服强度的统计分布规律,建立了含概率的本构模型,并进行了大规模计算,得到了大量的断裂应变模拟结果。结合实验与模拟结果,分析了6061铝电磁膨胀环动态断裂应变的应变率效应以及断裂应变韦伯分布假设的合理性。

     

  • 图  (a)密排PDV阵列测点布局及装配实物,(b)膨胀环实验装置原理

    Figure  1.  (a) Densely packed PDV array measurement points and assembly of the experimental setup; (b) principle of the expansion ring experimental device

    图  实验装置布局

    Figure  2.  Layout of the experimental equipment

    图  不同通道下PDV测速谱图

    Figure  3.  PDV velocity spectra with different channel

    图  (a) 40.1 μs和 (b) 43.1 μs时刻6061铝电磁膨胀环的高速摄影照片

    Figure  4.  High-speed photographs of the electromagnetic expansion ring made of 6061 aluminum alloy at 40.1 μs (a) and 43.1 μs (b)

    图  6061铝电磁膨胀环断裂应变的实验测量结果

    Figure  5.  Experimental measurement results of the fracture strain for electromagnetic expansion rings

    图  6061铝电磁膨胀环实验数据统计分布

    Figure  6.  Cumulative frequency distribution curve of the electromagnetic expansion ring experimental data

    图  膨胀环数值模型荷载界面

    Figure  7.  Load interface of the expansion ring simulation model

    图  6061铝样品的维氏硬度测量界面

    Figure  8.  Vickers hardness measurement interface of the 6061 aluminum ring

    图  6061铝环的维氏硬度频率分布

    Figure  9.  Vickers hardness frequency distribution of the 6061 aluminum ring

    图  10  6061铝维氏硬度Q-Q图

    Figure  10.  Q-Q plot of the Vickers hardness for 6061 aluminum

    图  11  6061铝电磁膨胀环数值模型断裂应变累计频率分布

    Figure  11.  Cumulative frequency distribution of the fracture strain of numerical simulation models for the 6061 aluminum electromagnetic expansion ring

    表  1  实验样品的最大扩展速度及断口数量

    Table  1.   Maximum expansion velocity and number of fractures of experimental samples

    Test No.Charging voltage/kVMaximum expansion velocity/(m·s–1)Number of fractures
    15.251131
    25.501203
    35.501304
    46.001454
    56.001506
    66.2517510
    76.501908
    下载: 导出CSV

    表  2  6061铝的J-C模型参数

    Table  2.   Parameters of the J-C model of the 6061 aluminum

    ρ/(g·cm−3) G/GPa A/GPa B/GPa n C $ \dot{\varepsilon}_0/\mathrm{s}^{-1} $ Tm/K Tr/K m cp/(J∙kg−1∙K−1)
    2.703 27 0.278 0.245 0.817 0.0256 1.0 925 300 1.34 876
    下载: 导出CSV
  • [1] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. doi: 10.1098/rspa.1947.0042
    [2] GRADY D. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin, Heidelberg: Springer, 2006.
    [3] ROBSON J D. Exploring effects of property variation on fragmentation of metal rings using a simple model [J]. Defence Technology, 2023, 23: 1–7. doi: 10.1016/j.dt.2022.08.014
    [4] TODINOV M T. Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws? [J]. International Journal of Solids and Structures, 2009, 46(3/4): 887–901. doi: 10.1016/j.ijsolstr.2008.09.033
    [5] NIORDSON F I. A unit for testing materials at high strain rates: by using ring specimens and electromagnetic loading, high strain rates are obtained in a tension test in a homogeneous, uniaxial strain field [J]. Experimental Mechanics, 1965, 5(1): 29–32. doi: 10.1007/BF02320901
    [6] ZHANG H, RAVI-CHANDAR K. On the dynamics of necking and fragmentation—Ⅰ. real-time and post-mortem observations in Al 6061-O [J]. International Journal of Fracture, 2006, 142(3): 183–217. doi: 10.1007/s10704-006-9024-7
    [7] ZHANG H, RAVI-CHANDAR K. On the dynamics of necking and fragmentation—Ⅱ. effect of material properties, geometrical constraints and absolute size [J]. International Journal of Fracture, 2008, 150(1): 3–36. doi: 10.1007/s10704-008-9233-3
    [8] JANISZEWSKI J. Ductility of selected metals under electromagnetic ring test loading conditions [J]. International Journal of Solids and Structures, 2012, 49(7/8): 1001–1008. doi: 10.1016/j.ijsolstr.2012.01.005
    [9] DAN J K, GUO Z L, CHEN Y, et al. Preliminary investigations on dynamic fracture of ductile metals by using electromagnetically driven expanding ring [J]. AIP Advances, 2020, 10(10): 105001. doi: 10.1063/5.0016527
    [10] JIANG Y, CHEN Y, GUO Z L, et al. Effect of strain rate on ductility of Cu TU1 in electromagnetic ring expansion [J]. International Journal of Impact Engineering, 2024, 184: 104832. doi: 10.1016/j.ijimpeng.2023.104832
    [11] BARKER L M, HOLLENBACH R E. Laser interferometer for measuring high velocities of any reflecting surface [J]. Journal of Applied Physics, 1972, 43(11): 4669–4675. doi: 10.1063/1.1660986
    [12] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques [J]. Review of Scientific Instruments, 2006, 77(8): 083108. doi: 10.1063/1.2336749
    [13] ALTYNOVA M, HU X Y, DAEHN G S. Increased ductility in high velocity electromagnetic ring expansion [J]. Metallurgical and Materials Transactions A, 1996, 27(7): 1837–1844. doi: 10.1007/BF02651933
    [14] LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. doi: 10.1016/j.ijimpeng.2017.07.008
    [15] HUANG S, CHEN H Y, ZHANG R, et al. Uncovering the fracture behavior of metallic cylindrical shells under internal explosive loadings via careful design of densely-arranged multi-point photon Doppler velocimetry measurements [J]. International Journal of Impact Engineering, 2023, 180: 104679. doi: 10.1016/j.ijimpeng.2023.104679
    [16] ZHANG H, PEI X Y, PENG H, et al. Phase-field modeling of spontaneous shear bands in collapsing thick-walled cylinders [J]. Engineering Fracture Mechanics, 2021, 249: 107706. doi: 10.1016/j.engfracmech.2021.107706
    [17] LOVINGER Z, RITTEL D, ROSENBERG Z. Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders [J]. Mechanics of Materials, 2018, 116: 130–145. doi: 10.1016/j.mechmat.2017.01.010
    [18] 邓云飞, 张永, 吴华鹏, 等. 6061-T651铝合金动态力学性能及J-C本构模型的修正 [J]. 机械工程学报, 2020, 56(20): 74–81. doi: 10.3901/JME.2020.20.074

    DENG Y F, ZHANG Y, WU H P, et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy [J]. Journal of Mechanical Engineering, 2020, 56(20): 74–81. doi: 10.3901/JME.2020.20.074
    [19] CAI J Z, GRIESBACH C, AHNEN S G, et al. Dynamic hardness evolution in metals from impact induced gradient dislocation density [J]. Acta Materialia, 2023, 249: 118807. doi: 10.1016/j.actamat.2023.118807
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  61
  • PDF下载量:  10
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-04-02
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-09-05

目录

    /

    返回文章
    返回