剪切增稠液浸渍凯夫拉织物的动态本构模型

叶义晨 文鹤鸣

叶义晨, 文鹤鸣. 剪切增稠液浸渍凯夫拉织物的动态本构模型[J]. 高压物理学报, 2025, 39(7): 074202. doi: 10.11858/gywlxb.20240968
引用本文: 叶义晨, 文鹤鸣. 剪切增稠液浸渍凯夫拉织物的动态本构模型[J]. 高压物理学报, 2025, 39(7): 074202. doi: 10.11858/gywlxb.20240968
YE Yichen, WEN Heming. A Dynamic Constitutive Model for Shear Thickening Fluid Impregnated Kevlar Fabric[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074202. doi: 10.11858/gywlxb.20240968
Citation: YE Yichen, WEN Heming. A Dynamic Constitutive Model for Shear Thickening Fluid Impregnated Kevlar Fabric[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074202. doi: 10.11858/gywlxb.20240968

剪切增稠液浸渍凯夫拉织物的动态本构模型

doi: 10.11858/gywlxb.20240968
详细信息
    作者简介:

    叶义晨(2000-),男,硕士研究生,主要从事冲击动力学研究. E-mail:ysa@mail.ustc.edu.cn

    通讯作者:

    文鹤鸣(1965-),男,博士,教授,主要从事冲击动力学研究. E-mail:hmwen@ustc.edu.cn

  • 中图分类号: O347.3; O521.2

A Dynamic Constitutive Model for Shear Thickening Fluid Impregnated Kevlar Fabric

  • 摘要: 剪切增稠液(shear thickening fluid, STF)浸渍凯夫拉(Kevlar)织物是一种新型复合材料,相比纯Kevlar织物,具有更好的抗冲击性能,研究其动态本构模型具有重要的理论意义和应用价值。首先,通过引入动态增强因子(应变率效应)和残余强度因子,结合STF的流变特性和纱线拔出实验结果,发展了STF浸渍Kevlar织物的连续介质损伤力学本构模型;然后,利用提出的本构模型,开展了不同冲击速度下STF浸渍Kevlar织物侵彻的数值模拟;最后,将模拟结果与文献中的相关实验结果进行对比分析。结果表明:所建立的本构模型能够预测STF浸渍Kevlar织物在冲击载荷作用下的力学响应和破坏形貌,并且能够描述STF浸渍后Kevlar织物抗冲击性能的增强效应。

     

  • 图  典型STF流变特性示意图

    Figure  1.  Schematic diagram of the typical rheological properties of STF

    图  损伤演化示意图

    Figure  2.  Schematic diagram of damage evolution

    图  STF浸渍Kevlar织物的DIF曲线[2325]

    Figure  3.  DIF curves of STF impregnated Kevlar fabric[2325]

    图  动态本构模型的数值算法流程图

    Figure  4.  Flowchart of numerical algorithms for the dynamic constitutive model

    图  弹道冲击实验[26]有限元模型

    Figure  5.  Finite element model of ballistic impact tests[26]

    图  弹道冲击实验中STF流变特性的拟合曲线与实验数据[26]的对比

    Figure  6.  Comparison of fitting curves with the rheological properties of STF used in ballistic impact experiments[26]

    图  弹道冲击实验中模拟的残余速度与实验结果[26]的对比

    Figure  7.  Comparison of the numerically predicted residual velocities with the ballistic impact experimental results[26]

    图  弹道冲击实验[26]与数值模拟得到的破坏形貌的对比

    Figure  8.  Comparison of the damage morphology of ballistic impact experiments[26] with that obtained from the numerical simulations

    图  不同损伤模式的损伤云图

    Figure  9.  Numerically predicted damage nephograms of different modes

    图  10  低速冲击实验[35]的有限元模型

    Figure  10.  Finite element model of low velocity impact experiments[35]

    图  11  低速冲击实验中STF流变特性的拟合曲线与实验数据[35]的对比

    Figure  11.  Comparison of fitting curve with the experimentally obtained rheological properties of STF used in low velocity impact experiments[35]

    图  12  数值模拟得到的载荷-位移、能量吸收-位移曲线与低速冲击实验结果[35]的对比

    Figure  12.  Comparison of the load and energy absorption-displacement curves obtained from numerical simulations with the low velocity impact experimental results[35]

    图  13  数值模拟得到的破坏形貌与低速冲击实验结果[35]的对比

    Figure  13.  Comparison of the damage morphology obtained from the numerical simulations with that observed in the low velocity impact experiments[35]

    图  14  准静态穿刺实验[36]的有限元模型

    Figure  14.  Finite element model of quasi-static puncture experiments[36]

    图  15  准静态穿刺实验中STF流变特性的拟合曲线与实验数据[36]的对比

    Figure  15.  Comparisons of fitting curve with the experimentally obtained rheological properties of STF used in quasi-static puncture experiments[36]

    图  16  数值模拟得到的载荷-位移曲线、能量吸收-位移曲线与准静态穿刺实验结果[36]的对比

    Figure  16.  Comparison of the load and energy absorption-displacement curves obtained from numerical simulations with quasi-static puncture experimental results[36]

    图  17  数值模拟得到的破坏形貌与准静态穿刺实验结果[36]的对比

    Figure  17.  Comparison of the damage morphology obtained from the numerical simulations with that observed in quasi-static puncture experiments[36]

    表  1  不同损伤模式下的等效位移和等效应力[1415]

    Table  1.   Equivalent displacement and equivalent stress for different damage modes[1415]

    Damage mode ${\delta _{j,{\rm{eq}}}}$ ${\sigma _{j,{\rm{eq}}}}$
    Tensile/shear damage in X-direction ${L_{\rm{c}}}\sqrt {{{\left\langle {{\varepsilon _{11}}} \right\rangle }^2}+{{{{\gamma _{12}^2}} }}+{{ {{\gamma _{31}^2}} }}} $ ${L_{\rm{c}}}\left( {{E_{11}}{{\left\langle {{\varepsilon _{11}}} \right\rangle }^2}+{G_{12}}{{{{\gamma _{12}^2}} }}+{G_{31}}{{{{\gamma _{31}^2}} }}} \right)/{\delta _{\rm{1,eq}}}$
    Tensile/shear damage in Y-direction ${L_{\rm{c}}}\sqrt {{{\left\langle {{\varepsilon _{22}}} \right\rangle }^2}+{{ {{\gamma _{12}^2}} }}+{{ {{\gamma _{23}^2}} }}} $ ${L_{\rm{c}}}\left( {{E_{22}}{{\left\langle {{\varepsilon _{22}}} \right\rangle }^2}+{G_{12}}{{ {{\gamma _{12}^2}} }}+{G_{23}}{{{{\gamma _{23}^2}}}}} \right)/{\delta _{\rm{2,eq}}}$
    Compression damage in X-direction ${L_{\rm{c}}}\sqrt {{{\left\langle {{{\varepsilon }_{11}'}} \right\rangle }^2}} $ ${L_{\rm{c}}}\left( {{E_{11}}{{\left\langle {{{\varepsilon}_{11} '}} \right\rangle }^2}} \right)/{\delta _{\rm{3,eq}}}$
    Compression damage in Y-direction ${L_{\rm{c}}}\sqrt {{{\left\langle {{{\varepsilon }_{22}'}} \right\rangle }^2}} $ ${L_{\rm{c}}}\left( {{E_{22}}{{\left\langle {{{\varepsilon }_{22}'}} \right\rangle }^2}} \right)/{\delta _{\rm{4,eq}}}$
    Transverse compression damage ${L_{\rm{c}}}\sqrt {{{\left\langle {{{\varepsilon }_{33}'}} \right\rangle }^2}} $ ${L_{\rm{c}}}\left( {{E_{33}}{{\left\langle {{{\varepsilon }_{33}'}} \right\rangle }^2}} \right)/{\delta _{\rm{5,eq}}}$
    In-plane shear damage ${L_{\rm{c}}}\sqrt {{{{{\gamma _{12}^2}} }}} $ ${L_{\rm{c}}}\left( {{G_{12}}{{ {{\gamma _{12}^2}} }}} \right)/{\delta _{\rm{6,eq}}}$
    Transverse tensile/shear damage ${L_{\rm{c}}}\sqrt {{{\left\langle {{\varepsilon _{33}}} \right\rangle }^2}+{{{{\gamma _{23}^2}} }}+{{{{\gamma _{31}^2}} }}} $ ${L_{\rm{c}}}\left( {{E_{33}}{{\left\langle {{\varepsilon _{33}}} \right\rangle }^2}+{G_{23}}{{ {{\gamma _{23}^2}} }}+{G_{31}}{{ {{\gamma _{31}^2}} }}} \right)/{\delta _{\rm{7,eq}}}$
    下载: 导出CSV

    表  2  数值模拟中STF浸渍Kevlar织物的材料参数[23, 2834]

    Table  2.   Material parameters of STF impregnated Kevlar fabric in the numerical simulations[23, 2834]

    E11/GPa E22/GPa E33/GPa G12/GPa G23/GPa G31/GPa ${\nu _{12}}$ ${\nu _{23}}$ ${\nu _{31}}$
    7070716.41.81.80.330.400.40
    Xt/MPaYt/MPaZt/MPaXc/MPaYc/MPaZc/MPaS12/MPaS23/MPaS31/MPa
    2 7582 7582458058060180180180
    下载: 导出CSV

    表  3  弹道冲击实验中STF流变特性的拟合参数[26]

    Table  3.   Parameters for fitting the rheological properties of STF used in ballistic impact experiments[26]

    w/% ${\eta _0}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\eta _{\rm{c}}}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\eta _{\rm{max}}}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\dot \gamma _{\rm{c}}}$/s−1 ${\dot \gamma _{\rm{max}}}$/s−1 K K K n n n
    15 38.775 0.972 50.624 78.952 238.946 −1 000 −0.001 7 0.003 6 0.46 1.0 1.4
    35 1 078.201 14.663 9 540.340 9.603 16.151 −1 000 −0.006 5 0.040 0 0.71 1.1 1.0
    下载: 导出CSV

    表  4  弹道冲击实验中数值模拟的材料参数[26]

    Table  4.   Material parameters for the numerical simulations of ballistic impact experiments[26]

    w/% $ {\rho _{\rm{areal}}} $/(kg·m−2) $ {f_{\rm{rs0}}} $ $ k $ $ \xi $
    15 0.523 0.4 0.272 0.444
    35 0.722 0.4 0.957 0.321
    下载: 导出CSV

    表  5  低速冲击实验中STF流变特性的拟合参数[35]

    Table  5.   Parameters for fitting the rheological properties of STF used in low velocity impact experiments[35]

    ${\eta _0}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\eta _{\rm{c}}}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\eta _{\rm{max}}}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\dot \gamma _{\rm{c}}}$/s−1 ${\dot \gamma _{\rm{max}}}$/s−1 K K K n n n
    20.677 5.26 362 54.5 164.725 −5 −0.02 0.005 0.7 1.2 2.0
    下载: 导出CSV

    表  6  低速冲击实验中数值模拟的材料参数[3536]

    Table  6.   Material parameters for the numerical simulations of low velocity impact experiments[3536]

    $ {\rho _{\rm{{areal}}}} $/(kg·m−2) $ {f_{\rm{rs0}}} $ $ k $ $ \xi $
    0.3032 0.16 0.814 0.796
    下载: 导出CSV

    表  7  准静态穿刺实验中STF流变特性的拟合参数[36]

    Table  7.   Parameters for fitting the rheological properties of STF used in quasi-static puncture experiments[36]

    ${\eta _0}/({\rm{Pa}} \cdot {\rm{s}})$ ${\eta _{\rm{c}}}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\eta _{\rm{max}}}/({\rm{Pa}} \cdot{\rm{ s}})$ ${\dot \gamma _{\rm{c}}}$/s−1 ${\dot \gamma _{\rm{max}}}$/s−1 K K K n n n
    2845 852 7449 58.808 570.207 20000 −0.006 0.0012 0.47 1.7 1.4
    下载: 导出CSV

    表  8  准静态穿刺实验中数值模拟的材料参数[36]

    Table  8.   Material parameters for the numerical simulations of quasi-static puncture experiments[36]

    $ {\rho_{\rm{{areal}}}}$/(kg·m−2) $ {f_{\rm{{rs0}}}} $ $ k $ $ \xi $
    0.5443 0.1 0.814 0.741
    下载: 导出CSV
  • [1] LI T T, DAI W N, WU L W, et al. Effects of STF and fiber characteristics on quasi-static stab resistant properties of shear thickening fluid (STF)-impregnated UHMWPE/Kevlar composite fabrics [J]. Fibers and Polymers, 2019, 20(2): 328–336. doi: 10.1007/s12221-019-8446-6
    [2] LIU L L, YANG Z Z, ZHAO Z H, et al. The influences of rheological property on the impact performance of Kevlar fabrics impregnated with SiO2/PEG shear thickening fluid [J]. Thin-Walled Structures, 2020, 151: 106717. doi: 10.1016/j.tws.2020.106717
    [3] LIU B, LIU Q, PAN Y C, et al. An impact-resistant and flame-retardant CNTs/STF/Kevlar composite with conductive property for safe wearable design [J]. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107489. doi: 10.1016/j.compositesa.2023.107489
    [4] MAWKHLIENG U, MAJUMDAR A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics [J]. Composites Part B: Engineering, 2019, 175: 107167. doi: 10.1016/j.compositesb.2019.107167
    [5] MAJUMDAR A, LAHA A. Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics [J]. Textile Research Journal, 2016, 86(19): 2056–2066. doi: 10.1177/0040517515619357
    [6] LI D Y, WANG R, LIU X, et al. Shear-thickening fluid using oxygen-plasma-modified multi-walled carbon nanotubes to improve the quasi-static stab resistance of Kevlar fabrics [J]. Polymers, 2018, 10(12): 1356. doi: 10.3390/polym10121356
    [7] QIN J B, GUO B R, ZHANG L, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid [J]. Composites Part B: Engineering, 2020, 183: 107686. doi: 10.1016/j.compositesb.2019.107686
    [8] LIU M, ZHANG S S, LIU S, et al. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance [J]. Composites Part A: Applied Science and Manufacturing, 2019, 126: 105612. doi: 10.1016/j.compositesa.2019.105612
    [9] KORDANI N, VANINI A S, AMIRI H. Numerical solution of penetration into woven fabric target impregnated with shear thickening fluid [J]. Polymers and Polymer Composites, 2016, 24(4): 281–287. doi: 10.1177/096739111602400407
    [10] KHODADADI A, LIAGHAT G H, SABET A R, et al. Experimental and numerical analysis of penetration into Kevlar fabric impregnated with shear thickening fluid [J]. Journal of Thermoplastic Composite Materials, 2018, 31(3): 392–407. doi: 10.1177/0892705717704485
    [11] SEN S, BIN JAMAL M N, SHAW A, et al. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite [J]. International Journal of Mechanical Sciences, 2019, 164: 105174. doi: 10.1016/j.ijmecsci.2019.105174
    [12] XIE Z H, CHEN W, LIU Y Y, et al. Design of the ballistic performance of shear thickening fluid (STF) impregnated Kevlar fabric via numerical simulation [J]. Materials & Design, 2023, 226: 111599. doi: 10.1016/j.matdes.2023.111599
    [13] LIU L L, CAI M, LUO G, et al. Macroscopic numerical simulation method of multi-phase STF-impregnated Kevlar fabrics. part 2: material model and numerical simulation [J]. Composite Structures, 2021, 262: 113662. doi: 10.1016/j.compstruct.2021.113662
    [14] LIAO J B, WEN H M. A constitutive model for shear thickening fluid (STF) impregnated Kevlar fabric subjected to impact loading [J]. International Journal of Impact Engineering, 2024, 191: 104990. doi: 10.1016/j.ijimpeng.2024.104990
    [15] XIN S H, WEN H M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading [J]. International Journal of Impact Engineering, 2015, 75: 40–52. doi: 10.1016/j.ijimpeng.2014.07.014
    [16] GALINDO-ROSALES F J, RUBIO-HERNÁNDEZ F J, SEVILLA A. An apparent viscosity function for shear thickening fluids [J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(5/6): 321–325. doi: 10.1016/j.jnnfm.2011.01.001
    [17] 王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟 [J]. 爆炸与冲击, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050

    WANG M, WEN H M. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading [J]. Explosion and Shock Waves, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050
    [18] LIAO J B, WANG M, WEN H M. A dynamic constitutive model for carbon nanotubes (CNTs) modified unidirectional fibre reinforced plastic laminates [J]. International Journal of Impact Engineering, 2024, 183: 104793. doi: 10.1016/j.ijimpeng.2023.104793
    [19] BAI R X, LI W K, LEI Z K, et al. Experimental study of yarn friction slip and fabric shear deformation in yarn pull-out test [J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 529–535. doi: 10.1016/j.compositesa.2018.02.001
    [20] BAI R X, MA Y, LEI Z K, et al. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test [J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105678. doi: 10.1016/j.compositesa.2019.105678
    [21] LEE B W, KIM I J, KIM C G. The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension [J]. Journal of Composite Materials, 2009, 43(23): 2679–2698. doi: 10.1177/0021998309345292
    [22] PARK J L, YOON B I, PAIK J G, et al. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; part I–effect of laminating sequence [J]. Textile Research Journal, 2012, 82(6): 527–541. doi: 10.1177/0040517511420753
    [23] LIU L L, CAI M, LUO G, et al. Macroscopic numerical simulation method of multi-phases STF impregnated Kevlar fabrics. part 1: quasi-static and dynamic mechanical test [J]. Composite Structures, 2021, 266: 113780. doi: 10.1016/j.compstruct.2021.113780
    [24] CAO S S, CHEN Q, WANG Y P, et al. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid [J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 161–169. doi: 10.1016/j.compositesa.2017.04.015
    [25] LIU L L, YANG Z Z, LIU X, et al. Yarn dynamic tensile behavior and meso-scale numerical simulation method for STF-Kevlar fabrics [J]. Thin-Walled Structures, 2021, 159: 107319. doi: 10.1016/j.tws.2020.107319
    [26] KHODADADI A, LIAGHAT G, VAHID S, et al. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid [J]. Composites Part B: Engineering, 2019, 162: 643–652. doi: 10.1016/j.compositesb.2018.12.121
    [27] MA Y, HONG X, LEI Z K, et al. Shear response behavior of STF/Kevlar composite fabric in picture frame test [J]. Polymer Testing, 2022, 113: 107652. doi: 10.1016/j.polymertesting.2022.107652
    [28] NATH R B, FENNER D N, GALIOTIS C. Elasto-plastic finite element modelling of interfacial failure in model Kevlar 49 fibre-epoxy composites [J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(9): 821–832. doi: 10.1016/1359-835X(96)00053-X
    [29] ZHENHUA Z, LULU L, WEI C, et al. Numerical simulation methodology of multi-layer Kevlar 49 woven fabrics in aircraft engine containment application [J]. International Journal of Crashworthiness, 2019, 24(1): 86–99. doi: 10.1080/13588265.2017.1422374
    [30] DETERESA S J, ALLEN S R, FARRIS R J, et al. Compressive and torsional behaviour of Kevlar 49 fibre [J]. Journal of Materials Science, 1984, 19(1): 57–72. doi: 10.1007/BF02403111
    [31] YEUNG K K H, RAO K P. Mechanical properties of Kevlar-49 fibre reinforced thermoplastic composites [J]. Polymers and Polymer Composites, 2012, 20(5): 411–424. doi: 10.1177/096739111202000501
    [32] FISCHER M, SCHMID R. Matrix properties and composite failure [J]. Colloid and Polymer Science, 1986, 264(5): 387–398. doi: 10.1007/BF01419542
    [33] LEAL A A, DEITZEL J M, GILLESPIE JR J W. Compressive strength analysis for high performance fibers with different modulus in tension and compression [J]. Journal of Composite Materials, 2009, 43(6): 661–674. doi: 10.1177/0021998308088589
    [34] HUANG J Z, LI Q H, YANG Q, et al. Measurement and research of the transverse mechanical properties of high performance fibers [J]. Key Engineering Materials, 2011, 492: 384–387. doi: 10.4028/www.scientific.net/KEM.492.384
    [35] XIE Z H, LIU Y Y, LIU L L, et al. Research on the adaptability of STF-Kevlar to ambient temperature under low-velocity impact conditions [J]. Polymer Testing, 2024, 133: 108416. doi: 10.1016/j.polymertesting.2024.108416
    [36] QIN J B, WANG T W, YUN J, et al. Response and adaptability of composites composed of the STF-treated Kevlar fabric to temperature [J]. Composite Structures, 2021, 260: 113511. doi: 10.1016/j.compstruct.2020.113511
  • 加载中
图(17) / 表(8)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  105
  • PDF下载量:  58
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-03-12
  • 录用日期:  2025-05-26
  • 网络出版日期:  2025-03-17
  • 刊出日期:  2025-07-07

目录

    /

    返回文章
    返回