Mo与CoCrFeNiMn高熵合金硬质涂层的制备、微结构及力学性能

崔凯捷 王建刚 王鹤峰 邢学刚 肖革胜 贾宜委

崔凯捷, 王建刚, 王鹤峰, 邢学刚, 肖革胜, 贾宜委. Mo与CoCrFeNiMn高熵合金硬质涂层的制备、微结构及力学性能[J]. 高压物理学报, 2025, 39(8): 084101. doi: 10.11858/gywlxb.20240966
引用本文: 崔凯捷, 王建刚, 王鹤峰, 邢学刚, 肖革胜, 贾宜委. Mo与CoCrFeNiMn高熵合金硬质涂层的制备、微结构及力学性能[J]. 高压物理学报, 2025, 39(8): 084101. doi: 10.11858/gywlxb.20240966
CUI Kaijie, WANG Jiangang, WANG Hefeng, XING Xuegang, XIAO Gesheng, JIA Yiwei. Preparation, Microstructure and Mechanical Properties of Mo Layer and CoCrFeNiMn High Entropy Alloy Hard Coating Layer[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 084101. doi: 10.11858/gywlxb.20240966
Citation: CUI Kaijie, WANG Jiangang, WANG Hefeng, XING Xuegang, XIAO Gesheng, JIA Yiwei. Preparation, Microstructure and Mechanical Properties of Mo Layer and CoCrFeNiMn High Entropy Alloy Hard Coating Layer[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 084101. doi: 10.11858/gywlxb.20240966

Mo与CoCrFeNiMn高熵合金硬质涂层的制备、微结构及力学性能

doi: 10.11858/gywlxb.20240966
基金项目: 山西省2024年度留学人员科技活动项目(2024-63);中国-白俄罗斯电磁环境效应“一带一路”联合实验室项目(ZBKF2022031101)
详细信息
    作者简介:

    崔凯捷(1999-),男,硕士,主要从事金属力学性能表征研究. E-mail:1476466526@qq.com

    通讯作者:

    王鹤峰(1978-),男,博士,副教授,主要从事金属力学性能表征研究. E-mail:whftyut@163.com

  • 中图分类号: O521.9; TG174.4

Preparation, Microstructure and Mechanical Properties of Mo Layer and CoCrFeNiMn High Entropy Alloy Hard Coating Layer

  • 摘要: 为解决Invar合金在实际应用中硬度低、使用寿命有限的问题,采用双辉等离子表面合金化技术(double glow plasma surface alloying,DGPSA)在Invar合金表面制备了Mo及CoCrFeNiMn硬质涂层,使用X射线衍射、扫描电子显微镜和X射线能谱仪研究了2种涂层的相结构、微观结构及元素分布。采用纳米压痕法研究了加载应变率对2种硬质涂层表面硬度、弹性模量和蠕变性能的影响。结果显示:制备的Mo涂层厚度约为8.3 μm,涂层内部致密均匀,涂层具有体心立方结构;制备的CoCrFeNiMn涂层厚度约为10 μm,涂层内部存在少量孔隙,涂层具有面心立方结构。纳米压痕实验测得Mo涂层和CoCrFeNiMn涂层的硬度分别为15.49和8.18 GPa,弹性模量分别为278.70和227.12 GPa,2种硬质涂层均显著提高了Invar合金的表面硬度和弹性模量,且2种涂层均具有足够的韧性。2种涂层的硬度均随应变率的增大而增大,展现出明显的应变率效应,弹性模量基本保持稳定。同时,2种涂层的蠕变行为会受到加载应变率的影响,纳米压痕蠕变行为主要表现为位错运动,Mo涂层的改性效果优于CoCrFeNiMn涂层。

     

  • 图  CoCrFeNiMn涂层表面的SEM图像和EDS元素分布

    Figure  1.  SEM images and EDS element distribution of CoCrFeNiMn coating surface

    图  CoCrFeNiMn和Mo涂层的XRD谱

    Figure  2.  XRD patterns of the CoCrFeNiMn layer and Mo coating layer

    图  Mo涂层表面SEM图像和EDS元素分布

    Figure  3.  SEM images and EDS element distribution of the Mo coating surface

    图  CoCrFeNiMn涂层的截面形态和EDS线扫图谱

    Figure  4.  Section morphology of the CoCrFeNiMn coating layer and EDS line scan map

    图  Mo涂层的截面形态和相应的EDS线扫图谱

    Figure  5.  Section morphology of the Mo coating layer and corresponding EDS line scan map

    图  不同应变率下2种涂层和Invar合金的载荷-位移曲线

    Figure  6.  Load-displacement curves of the two coating layers and Invar alloy at different strain rates

    图  不同应变率下2种涂层和Invar合金的硬度-位移曲线

    Figure  7.  Hardness-displacement curves of the two coating layers and Invar alloy at different strain rates

    图  不同应变率下2种涂层和Invar合金的弹性模量-位移曲线

    Figure  8.  Elastic modulus-displacement curves of the two coating layers and Invar alloy at different strain rates

    图  2种涂层的硬度和弹性模量随应变率的变化

    Figure  9.  Variations of hardness and elastic modulus of the two coating layers with strain rates

    图  10  不同应变率下2种涂层的蠕变位移和蠕变应变率随时间变化曲线

    Figure  10.  Creep displacement and creep strain rate versus time curves of the two coating layers at different strain rates

    图  11  不同应变率下2种涂层的硬度与蠕变应变率的双对数曲线

    Figure  11.  Logarithmic curves of hardness and creep strain rate of the two coatings at different strain rates

    表  1  Mo/CoCrCFeNiMn涂层的合金化工艺参数

    Table  1.   Process parameters of the Mo/CoCrFeNiMn coating layer

    Distance between the source
    and sample/mm
    Voltage of the
    source/V
    Voltage of the
    cathode/V
    Working
    pressure/Pa
    Holding
    time/h
    Holding
    temperature/℃
    14–16 −920–−790 −620–−490 30 3 900
    下载: 导出CSV

    表  2  不同应变率下CoCrFeNiMn涂层的总功、弹性功、塑性功和塑性指数

    Table  2.   Total work, elastic work, plastic work and plastic index of the CoCrFeNiMn coating layer at different strain rates

    $\dot \varepsilon $/s−1 Wtot/(10−9 J) We/(10−9 J) Wp/(10−9 J) i
    0.01 33.52 10.71 22.81 0.68
    0.05 44.38 15.62 28.76 0.65
    0.10 46.71 18.96 27.75 0.59
    0.20 61.29 24.36 36.93 0.60
    下载: 导出CSV

    表  3  不同应变率下Mo涂层的总功、弹性功、塑性功和塑性指数

    Table  3.   Total work, elastic work, plastic work and plastic index of the Mo coating layer at different strain rates

    $\dot \varepsilon$/s−1 Wtot/(10−9 J) We/(10−9 J) Wp/(10−9 J) i
    0.01 75.81 23.51 52.30 0.69
    0.05 78.47 23.62 54.85 0.70
    0.10 87.36 31.32 56.04 0.64
    0.20 97.32 34.82 62.50 0.64
    下载: 导出CSV

    表  4  不同应变率下 Mo涂层的蠕变位移拟合结果

    Table  4.   Creep displacement fitting results of the Mo coating layer at different strain rates

    $\dot \varepsilon $/s−1 A b k R2
    0.01 3.53710 0.29675 0.01199 0.99583
    0.05 10.99365 0.16660 0.01215 0.99604
    0.10 10.11826 0.21823 0.00258 0.99658
    0.20 21.23843 0.12993 0.01640 0.99750
    下载: 导出CSV

    表  5  不同应变率下CoCrFeNiMn 涂层的蠕变位移拟合结果

    Table  5.   Creep displacement fitting results of the CoCrFeNiMn coating layer at different strain rates

    $\dot \varepsilon $/s−1 A b k R2
    0.01 3.36007 0.32704 0.01699 0.98791
    0.05 3.57775 0.29970 0.00631 0.99523
    0.10 11.15359 0.13845 0.00858 0.99193
    0.20 10.30795 0.20805 0.00379 0.99692
    下载: 导出CSV
  • [1] VAN SCHILFGAARDE M, ABRIKOSOV I A, JOHANSSON B. Origin of the Invar effect in iron-nickel alloys [J]. Nature, 1999, 400(6739): 46–49. doi: 10.1038/21848
    [2] 陈昀, 李明光, 张艳红, 等. 因瓦合金发展现状及应用前景 [J]. 机械研究与应用, 2009, 22(4): 9–11, 14. doi: 10.3969/j.issn.1007-4414.2009.04.003

    CHEN Y, LI M G, ZHANG Y H, et al. The development actuality and application prospect of Invar alloy [J]. Mechanical Research & Application, 2009, 22(4): 9–11, 14. doi: 10.3969/j.issn.1007-4414.2009.04.003
    [3] 杨博, 李宏, 曹正华. 殷钢在复合材料成形模具中的应用 [J]. 玻璃钢/复合材料, 2010(6): 68–69, 44. doi: 10.3969/j.issn.1003-0999.2010.06.016

    YANG B, LI H, CAO Z H. Application of Invar in mould for composites [J]. Composites Science and Engineering, 2010(6): 68–69, 44. doi: 10.3969/j.issn.1003-0999.2010.06.016
    [4] HAN X L, LIU P, SUN D L, et al. The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti2AlN/TiAl composite: a combined in-situ TEM and atomistic simulations [J]. Composites Part B: Engineering, 2020, 185: 107794. doi: 10.1016/j.compositesb.2020.107794
    [5] 陈正涵, 孙晓峰, 李占明, 等. 镍铝青铜基冷喷涂Cu402F与Cu涂层的力学性能 [J]. 材料导报, 2018, 32(10): 1618–1622. doi: 10.11896/j.issn.1005-023X.2018.10.009

    CHEN Z H, SUN X F, LI Z M, et al. Mechanical properties of cold sprayed Cu402F and Cu coating deposited on nickel aluminum bronze [J]. Materials Reports, 2018, 32(10): 1618–1622. doi: 10.11896/j.issn.1005-023X.2018.10.009
    [6] EISSEL A, ENGELKING L, GUSTUS R, et al. Alloy modification for additive manufactured Ni alloy components—part Ⅰ: effect on microstructure and hardness of Invar alloy [J]. Welding in the World, 2023, 67(4): 1049–1057. doi: 10.1007/s40194-023-01510-w
    [7] 张文凯, 彭放, 郭振堂, 等. 高压烧结镀Cr、Ti膜金刚石/铜复合材料热导率研究 [J]. 高压物理学报, 2012, 26(3): 306–312. doi: 10.11858/gywlxb.2012.03.010

    ZHANG W K, PENG F, GUO Z T, et al. Research on thermal conductivity of diamond with Cr, Ti coating/copper composite materials by sintering under high pressure [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 306–312. doi: 10.11858/gywlxb.2012.03.010
    [8] WANG G C, ZHU X B, LIU L Y, et al. Microstructure and mechanical properties of a Ti-6Al-4V titanium alloy subjected to laser cladding [J]. Journal of Materials Engineering and Performance, 2025, 34(3): 2484–2497. doi: 10.1007/s11665-024-09200-4
    [9] 韩晶晶, 贺端威, 马迎功, 等. 类金刚石微球的高温高压制备 [J]. 高压物理学报, 2017, 31(3): 215–222. doi: 10.11858/gywlxb.2017.03.002

    HAN J J, HE D W, MA Y G, et al. Synthesis of diamond-like carbon spheres under high temperature and high pressure [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 215–222. doi: 10.11858/gywlxb.2017.03.002
    [10] DU M Z, WANG L L, GAO Z N, et al. Microstructure and element distribution characteristics of Y2O3 modulated WC reinforced coating on Invar alloys by laser cladding [J]. Optics & Laser Technology, 2022, 153: 108205. doi: 10.1016/j.optlastec.2022.108205
    [11] NAGAYAMA T, YAMAMOTO T, NAKAMURA T, et al. Properties of electrodeposited Invar Fe-Ni alloy/SiC composite film [J]. Surface and Coatings Technology, 2017, 322: 70–75. doi: 10.1016/j.surfcoat.2017.05.023
    [12] JIAO Z J, YU C, WANG X M, et al. Corrosion resistance enhanced by an atomic layer deposited Al2O3/micro-arc oxidation coating on magnesium alloy AZ31 [J]. Ceramics International, 2024, 50(3): 5541–5551. doi: 10.1016/j.ceramint.2023.11.309
    [13] 徐重, 张艳梅, 张平则, 等. 双层辉光等离子表面冶金技术 [J]. 热处理, 2009, 24(1): 1–11. doi: 10.3969/j.issn.1008-1690.2009.01.001

    XU Z, ZHANG Y M, ZHANG P Z, et al. Double glow plasma surface metallurgy technology [J]. Heat Treatment, 2009, 24(1): 1–11. doi: 10.3969/j.issn.1008-1690.2009.01.001
    [14] LEI X, LIN N M, YUAN S, et al. Combining laser surface texturing and double glow plasma surface chromizing to improve tribological performance of Ti6Al4V alloy [J]. Surface and Coatings Technology, 2024, 478: 130418. doi: 10.1016/j.surfcoat.2024.130418
    [15] ZHU X B, DANG B, LI F K, et al. Tribocorrosion behavior of Nb coating deposited by double-glow plasma alloying [J]. Materials Research Express, 2021, 8(1): 016411. doi: 10.1088/2053-1591/abdc39
    [16] 徐一斐, 张楠, 许培鑫, 等. EHLA原位熔覆Ti(C,B)/Ni60A复合涂层的界面特征与表面磨损机理 [J/OL]. 金属学报 (2024-02-29)[2024-12-26]. http://kns.cnki.net/kcms/detail/21.1139.TG.20240228.1145.008.html.

    XU Y F, ZHANG N, XU P X, et al. Interfacial characterization and surface wear mechanism of in-situ Ti(C,B)/Ni60A composite coating prepared by EHLA [J/OL]. Acta Metallurgica Sinica (2024-02-29)[2024-12-26]. http://kns.cnki.net/kcms/detail/21.1139.TG.20240228.1145.008.html.
    [17] MA Y, ZHANG Y, YAO X H, et al. Characterization of Mo surface modified Ti by indentation techniques [J]. Surface and Coatings Technology, 2013, 226: 75–81. doi: 10.1016/j.surfcoat.2013.03.038
    [18] WANG Z, WANG C, ZHAO Y L, et al. Fatigue studies of CoCrFeMnNi high entropy alloy films using nanoindentation dynamic mechanical analyses [J]. Surface and Coatings Technology, 2021, 410: 126927. doi: 10.1016/j.surfcoat.2021.126927
    [19] WANG Y D, WANG H F, JIA Y W, et al. Nano-mechanical properties of Mo coating prepared on Invar alloy substrate by double glow plasma surface alloying [J]. Surface and Coatings Technology, 2022, 447: 128850. doi: 10.1016/j.surfcoat.2022.128850
    [20] OLIVEIRA J P, PONDER K, BRIZES E, et al. Combining resistance spot welding and friction element welding for dissimilar joining of aluminum to high strength steels [J]. Journal of Materials Processing Technology, 2019, 273: 116192. doi: 10.1016/j.jmatprotec.2019.04.018
    [21] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564
    [22] YAGHOOBI M, VOYIADJIS G Z. The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates [J]. Acta Materialia, 2018, 151: 1–10.
    [23] XING X G, WANG Y S, XIAO G S, et al. Rate-dependent indentation size effect on hardness and creep behavior of a titanium metallization film on alumina substrate [J]. Journal of Materials Research and Technology, 2021, 15: 4662–4671. doi: 10.1016/j.jmrt.2021.10.101
    [24] XIAO G S, YUAN G Z, JIA C N, et al. Strain rate sensitivity of Sn-3.0Ag-0.5Cu solder investigated by nanoindentation [J]. Materials Science and Engineering: A, 2014, 613: 336–339. doi: 10.1016/j.msea.2014.06.113
    [25] LIU E Q, XIAO G S, JIA W F, et al. Strain-induced phase transformation behavior of stabilized zirconia ceramics studied via nanoindentation [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75: 14–19. doi: 10.1016/j.jmbbm.2017.07.006
    [26] ZHAI H M, MA X, CHENG B, et al. Room temperature nanoindentation creep behavior of detonation sprayed Fe-based amorphous coating [J]. Intermetallics, 2022, 141: 107426. doi: 10.1016/j.intermet.2021.107426
    [27] LI H, NGAN A H W. Size effects of nanoindentation creep [J]. Journal of Materials Research, 2004, 19(2): 513–522. doi: 10.1557/jmr.2004.19.2.513
    [28] MAYO M J, NIX W D. A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb [J]. Acta Metallurgica, 1988, 36(8): 2183–2192. doi: 10.1016/0001-6160(88)90319-7
    [29] LLOYD G E. Creep of crystals: high-temperature deformation processes in metals, ceramics and minerals: Poirier, J. -P. 1985. Cambridge University Press. 260 pp. price: paperback £10.95 [J]. Journal of Structural Geology, 1986, 8(2): 213–214. doi: 10.1016/0191-8141(86)90116-1
    [30] MA X K, LI F G, ZHAO C, et al. Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature [J]. Journal of Alloys and Compounds, 2017, 709: 322–328. doi: 10.1016/j.jallcom.2017.03.175
    [31] LANGDON T G. Identifiying creep mechanisms at low stresses [J]. Materials Science and Engineering: A, 2000, 283(1/2): 266–273. doi: 10.1016/S0921-5093(00)00624-9
    [32] MAHMUDI R, ROUMINA R, RAEISINIA B. Investigation of stress exponent in the power-law creep of Pb-Sb alloys [J]. Materials Science and Engineering: A, 2004, 382(1/2): 15–22. doi: 10.1016/j.msea.2004.05.078
    [33] SHARMA G, RAMANUJAN R V, KUTTY T R G, et al. Hot hardness and indentation creep studies of a Fe-28Al-3Cr-0.2C alloy [J]. Materials Science and Engineering: A, 2000, 278(1/2): 106–112. doi: 10.1016/S0921-5093(99)00590-0
    [34] DE LA TORRE A, ADEVA P, ABALLE M. Indentation creep of lead and lead-copper alloys [J]. Journal of Materials Science, 1991, 26(16): 4351–4354. doi: 10.1007/BF00543650
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  130
  • PDF下载量:  42
出版历程
  • 收稿日期:  2024-12-26
  • 修回日期:  2025-03-03
  • 网络出版日期:  2025-03-11
  • 刊出日期:  2025-08-05

目录

    /

    返回文章
    返回