岩石RHT模型部分参数的敏感性分析及确定

李洪超 王富旗 张继 梁瑞 文义明

李洪超, 王富旗, 张继, 梁瑞, 文义明. 岩石RHT模型部分参数的敏感性分析及确定[J]. 高压物理学报, 2025, 39(6): 064203. doi: 10.11858/gywlxb.20240965
引用本文: 李洪超, 王富旗, 张继, 梁瑞, 文义明. 岩石RHT模型部分参数的敏感性分析及确定[J]. 高压物理学报, 2025, 39(6): 064203. doi: 10.11858/gywlxb.20240965
LI Hongchao, WANG Fuqi, ZHANG Ji, LIANG Rui, WEN Yiming. Sensitivity Analysis and Determination of Some Parameters of the Rock RHT Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064203. doi: 10.11858/gywlxb.20240965
Citation: LI Hongchao, WANG Fuqi, ZHANG Ji, LIANG Rui, WEN Yiming. Sensitivity Analysis and Determination of Some Parameters of the Rock RHT Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064203. doi: 10.11858/gywlxb.20240965

岩石RHT模型部分参数的敏感性分析及确定

doi: 10.11858/gywlxb.20240965
基金项目: 国家自然科学基金(52164010,52364016);云南省兴滇英才支持计划青年人才专项(KKXX202456056)
详细信息
    作者简介:

    李洪超(1984-),男,博士,副教授,主要从事岩石爆破理论与技术研究. E-mail:34031826@qq.com

    通讯作者:

    文义明(1986-),男,硕士,副教授,主要从事岩石力学及采矿工艺研究. E-mail:290605575@qq.com

  • 中图分类号: O347.1; O521.9

Sensitivity Analysis and Determination of Some Parameters of the Rock RHT Model

  • 摘要: Riedel-Hiermaier-Thoma(RHT)本构模型被广泛应用于爆炸冲击、侵彻等问题的数值模拟和分析,而模拟结果的准确性在很大程度上取决于模型参数取值。为完成不同岩石RHT模型参数的敏感性分析及参数确定,利用LS-DYNA软件开展单一因素变化下弹体侵彻靶体及分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)冲击模拟试验,分析参数取值变化对模拟结果的影响,进而通过正交试验分析,确定参数的交互效应。结果表明:不同工况条件下,模型参数的敏感性排序存在差异,确定了Lode角相关系数、拉伸屈服面参数、参考压缩应变率、参考拉伸应变率、失效压缩应变率及失效拉伸应变率对SHPB冲击曲线弹性阶段、线性强化阶段及损伤软化阶段的影响。利用SHPB冲击正交试验验证了6个参数间无显著交互作用,单因素敏感性分析结果有效,通过量化分析得到了花岗岩、红砂岩及大理岩RHT模型中6个参数的最优取值。研究结果可为岩石类RHT模型参数的敏感性分析及确定提供参考。

     

  • 图  模型尺寸及网格设计

    Figure  1.  Model size and grid design

    图  弹体侵彻标准选取

    Figure  2.  Selection of projectile penetration standards

    图  不同参数变化率下模拟结果的变化

    Figure  3.  Changes of simulation results under different parameter variation rates

    图  SHPB数值模型及网格划分

    Figure  4.  Numerical model and mesh generation of SHPB

    图  冲击载荷下数值模拟有效性验证

    Figure  5.  Verification of the validity of numerical simulations under impact loading

    图  不同参数取值下3种岩石的动态应力-应变曲线

    Figure  6.  Dynamic stress-strain curves of three type of rocks with different parameter values

    图  大理岩SHPB冲击模拟曲线与试验曲线面积差

    Figure  7.  Difference between the area of simulated SHPB impact curve and test curve of marble

    图  正交试验结果

    Figure  8.  Results of orthogonal test

    表  1  模拟与试验结果[22]对比

    Table  1.   Comparison between simulation and test results[22]

    Rock type Target material properties Penetration depth
    ρ0/(g·cm−3) E/GPa fc/MPa ft/MPa Exp./cm Sim./cm Error/%
    Red sandstone 2.445 24.826 101.913 5.836 12.134 11.784 −2.884
    Marble 2.690 61.212 73.679 5.077 15.059 15.353 −1.952
    Granite 2.686 39.874 130.967 7.705 8.410 8.151 −3.080
    下载: 导出CSV

    表  2  参数取值

    Table  2.   Parameter selection

    Variation rate/% B $ {g}_{\rm t}^{\mathrm{*}} $ $ {\dot{\varepsilon }}_{0}^{\mathrm{c}} $/s−1 $ {\dot{\varepsilon }}_{0}^{\mathrm{t}} $/s−1 $ {\dot{\varepsilon }}^{\mathrm{c}} $/s−1 $ {\dot{\varepsilon }}^{\mathrm{t}} $/s−1
    Red sandstone Marble Granite
    −80 0.0021 0.1228 0.1344 0.1202 6.00×10−6 6.00×10−7 6.00×1024 6.00×1024
    −60 0.0042 0.2456 0.2688 0.2404 1.20×10−5 1.20×10−6 1.20×1025 1.20×1025
    −40 0.0063 0.3684 0.4032 0.3606 1.80×10−5 1.80×10−6 1.80×1025 1.80×1025
    −20 0.0084 0.4912 0.5376 0.4808 2.40×10−5 2.40×10−6 2.40×1025 2.40×1025
    0 0.0105 0.6140 0.6720 0.6010 3.00×10−5 3.00×10−6 3.00×1025 3.00×1025
    20 0.0126 0.7368 0.8064 0.7212 3.60×10−5 3.60×10−6 3.60×1025 3.60×1025
    40 0.0147 0.8596 0.9408 0.8414 4.20×10−5 4.20×10−6 4.20×1025 4.20×1025
    60 0.0168 0.9824 1.0752 0.9616 4.80×10−5 4.80×10−6 4.80×1025 4.80×1025
    80 0.0189 1.1052 1.2096 1.0818 5.40×10−5 5.40×10−6 5.40×1025 5.40×1025
    下载: 导出CSV

    表  3  不同参数的平均敏感度系数

    Table  3.   Average sensitivity analysis factor of different parameters

    Parameter Average SAF
    Granite Red sandstone Marble
    B 5.13×10−4 5.35×10−4 3.87×10−4
    $ {g}_{\rm t}^{\mathrm{*}} $ 1.09×10−3 1.07×10−3 5.23×10−4
    $ {\dot{\varepsilon }}_{0}^{\rm c} $ 1.34×10−3 1.07×10−3 5.72×10−4
    $ {\dot{\varepsilon }}_{0}^{\rm t} $ 1.75×10−3 1.44×10−3 6.30×10−4
    $ {\dot{\varepsilon }}^{\rm c} $ 9.04×10−4 8.66×10−4 4.56×10−4
    $ {\dot{\varepsilon }}^{\rm t} $ 7.98×10−4 8.43×10−4 5.03×10−4
    下载: 导出CSV

    表  4  SHPB冲击试验参数

    Table  4.   SHPB impact test parameters

    Variation rate/% B $ {g}_{\rm t}^{\mathrm{*}} $ $ {\dot{\varepsilon }}_{0}^{\mathrm{c}} $/s−1 $ {\dot{\varepsilon }}_{0}^{\mathrm{t}} $/s−1 $ {\dot{\varepsilon }}^{\mathrm{c}} $/s−1 $ {\dot{\varepsilon }}^{\mathrm{t}} $/s−1
    −40 0.0063 0.42 1.80×10−11 1.80×10−12 1.80×1019 1.80×1019
    −20 0.0084 0.56 2.40×10−11 2.40×10−12 2.40×1019 2.40×1019
    0 0.0105 0.70 3.00×10−11 3.00×10−12 3.00×1019 3.00×1019
    20 0.0126 0.84 3.60×10−11 3.60×10−12 3.60×1019 3.60×1019
    40 0.0147 0.98 4.20×10−11 4.20×10−12 4.20×1019 4.20×1019
    下载: 导出CSV

    表  5  VIF计算结果

    Table  5.   Results of VIF calculation

    Argument VIF
    Granite Red sandstone Marble
    B 1.0004 1.0005 1.0002
    $ {g}_{\rm t}^{\mathrm{*}} $ 1.0001 1.0002 1.0005
    $ {\dot{\varepsilon }}_{0}^{\mathrm{c}} $ 1.0005 1.0004 1.0004
    $ {\dot{\varepsilon }}_{0}^{\mathrm{t}} $ 1.0001 1.0003 1.0003
    $ {\dot{\varepsilon }}^{\mathrm{c}} $ 1.0003 1.0001 1.0001
    $ {\dot{\varepsilon }}^{\mathrm{t}} $ 1.0002 1.0003 1.0002
    下载: 导出CSV
  • [1] RIEDEL W, THOMA K, HIERMAIER S. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures, 1999.
    [2] 张雄, 廉艳平, 刘岩, 等. 物质点法[M]. 北京: 清华大学出版社, 2013.

    ZHANG X, LIAN Y P, LIU Y, et al. Material point method [M]. Beijing: Tsinghua University Press, 2013.
    [3] 李忠献, 刘泽锋. 混凝土动态本构模型综述 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 853–863. doi: 10.11784/tdxbz201412081

    LI Z X, LIU Z F. Review of concrete dynamic constitutive model [J]. Journal of Tianjin University (Science and Technology), 2015, 48(10): 853–863. doi: 10.11784/tdxbz201412081
    [4] 黄永辉, 孙博, 张智宇, 等. 岩石RHT本构的爆破碎裂判定方法优化及验证 [J]. 北京理工大学学报, 2023, 43(6): 565–574. doi: 10.15918/j.tbit1001-0645.2022.157

    HUANG Y H, SUN B, ZHANG Z Y, et al. Optimization and verification of blasting fragmentation judgment method for RHT constitutive model of rock [J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 565–574. doi: 10.15918/j.tbit1001-0645.2022.157
    [5] 李洪超, 刘殿书, 赵磊, 等. 大理岩RHT模型参数确定研究 [J]. 北京理工大学学报, 2017, 37(8): 801–806. doi: 10.15918/j.tbit1001-0645.2017.08.006

    LI H C, LIU D S, ZHAO L, et al. Study on parameters determination of marble RHT model [J]. Transactions of Beijing Institute of Technology, 2017, 37(8): 801–806. doi: 10.15918/j.tbit1001-0645.2017.08.006
    [6] LI H C, LIU D S, ZHAO L, et al. Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures [J]. Journal of Beijing Institute of Technology, 2015, 24(3): 313–320. doi: 10.15918/j.jbit1004-0579.201524.0305
    [7] TANG Z Q, YANG S L, ZHANG R, et al. An RHT-model-based equivalent parameter scheme for blast response simulation of RC frames [J]. International Journal of Structural Stability and Dynamics, 2022, 22(1): 2250010. doi: 10.1142/S0219455422500109
    [8] TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. doi: 10.1016/j.ijimpeng.2010.04.004
    [9] ABDEL-KADER M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact [J]. International Journal of Impact Engineering, 2019, 132: 103312. doi: 10.1016/j.ijimpeng.2019.06.001
    [10] 凌天龙, 王宇涛, 刘殿书, 等. 修正RHT模型在岩体爆破响应数值模拟中的应用 [J]. 煤炭学报, 2018, 43(Suppl 2): 434–442. doi: 10.13225/j.cnki.jccs.2017.1698

    LING T L, WANG Y T, LIU D S, et al. Modified RHT model for numerical simulation of dynamic response of rock mass under blasting load [J]. Journal of China Coal Society, 2018, 43(Suppl 2): 434–442. doi: 10.13225/j.cnki.jccs.2017.1698
    [11] 王卫华, 刘洋, 张理维, 等. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟 [J]. 黄金科学技术, 2022, 30(3): 414–426. doi: 10.11872/j.issn.1005-2518.2022.03.130

    WANG W H, LIU Y, ZHANG L W, et al. Numerical simulation of homogeneous rock mass damage caused by two-hole simultaneous blasting based on RHT model [J]. Gold Science and Technology, 2022, 30(3): 414–426. doi: 10.11872/j.issn.1005-2518.2022.03.130
    [12] 张若棋, 丁育青, 汤文辉, 等. 混凝土HJC、RHT本构模型的失效强度参数 [J]. 高压物理学报, 2011, 25(1): 15–22. doi: 10.11858/gywlxb.2011.01.003

    ZHANG R Q, DING Y Q, TANG W H, et al. The failure strength parameters of HJC and RHT concrete constitutive models [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15–22. doi: 10.11858/gywlxb.2011.01.003
    [13] 饶军应, 薛炀皓, 沈阳, 等. 基于RHT模型的层理分布与爆破损伤关联耦合性分析 [J]. 中南大学学报(自然科学版), 2023, 54(3): 1204–1218.

    RAO J Y, XUE Y H, SHEN Y, et al. Analysis of correlation coupling between bedding distribution and blasting damage based on RHT model [J]. Journal of Central South University (Science and Technology), 2023, 54(3): 1204–1218.
    [14] 王宇涛. 基于RHT本构的岩体爆破破碎模型研究 [D]. 北京: 中国矿业大学(北京), 2015.

    WANG Y T. The study of the broken model for rock mass blasting based on RHT constitutive equations [D]. Beijing: China University of Mining and Technology (Beijing), 2015.
    [15] 李洪超, 陈勇, 刘殿书, 等. 岩石RHT模型主要参数敏感性及确定方法研究 [J]. 北京理工大学学报, 2018, 38(8): 779–785. doi: 10.15918/j.tbit1001-0645.2018.08.002

    LI H C, CHEN Y, LIU D S, et al. Sensitivity analysis determination and optimization of rock RHT parameters [J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 779–785. doi: 10.15918/j.tbit1001-0645.2018.08.002
    [16] 刘殿柱, 刘娜, 高天赐, 等. 应用正交试验法的RHT模型参数敏感性研究 [J]. 北京理工大学学报, 2019, 39(6): 558–564. doi: 10.15918/j.tbit1001-0645.2019.06.002

    LIU D Z, LIU N, GAO T C, et al. Study on the parameter sensitivity of RHT concrete model by orthogonal test technique [J]. Transactions of Beijing Institute of Technology, 2019, 39(6): 558–564. doi: 10.15918/j.tbit1001-0645.2019.06.002
    [17] 辛健. 爆炸作用下RHT模型参数敏感性分析 [J]. 舰船电子工程, 2019, 39(4): 111–113, 122. doi: 10.3969/j.issn.1672-9730.2019.04.024

    XIN J. Sensitivity analysis of RHT model parameters under explosive attack [J]. Ship Electronic Engineering, 2019, 39(4): 111–113, 122. doi: 10.3969/j.issn.1672-9730.2019.04.024
    [18] 聂铮玥, 彭永, 陈荣, 等. 侵彻条件下岩石类材料RHT模型参数敏感性分析 [J]. 振动与冲击, 2021, 40(14): 108–116. doi: 10.13465/j.cnki.jvs.2021.14.015

    NIE Z Y, PENG Y, CHEN R, et al. Sensitivity analysis of RHT model parameters for rock materials under penetrating condition [J]. Journal of Vibration and Shock, 2021, 40(14): 108–116. doi: 10.13465/j.cnki.jvs.2021.14.015
    [19] 马凯, 任高峰, 葛永翔, 等. 硬石膏矿RHT动力学模型参数研究 [J]. 爆破, 2024, 41(4): 35–44. doi: 10.3963/j.issn.1001-487X.2024.04.005

    MA K, REN G F, GE Y X, et al. Study on parameters of anhydrite RHT dynamic model [J]. Blasting, 2024, 41(4): 35–44. doi: 10.3963/j.issn.1001-487X.2024.04.005
    [20] 张伟, 王建国, 王勉, 等. 基于RHT本构模型的连续装药预裂爆破孔距优化研究 [J]. 高压物理学报, 2025, 39(1): 015201. doi: 10.11858/gywlxb.20240834

    ZHANG W, WANG J G, WANG M, et al. Optimization study of pre-splitting hole spacing for continuous charging based on RHT constitutive model [J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 015201. doi: 10.11858/gywlxb.20240834
    [21] YOU Y Y, YANG R S, ZUO J J, et al. Research on the fragmentation characteristics of ironore based on RHT constitutive model calibration and charge structure optimization [J]. Mining, Metallurgy & Exploration, 2024, 41(4): 1819–1834.
    [22] 聂铮玥. 三种典型岩石材料的RHT模型参数研究[D]. 长沙: 国防科技大学, 2021.

    NIE Z Y. Experimental study on RHT model parameters of three typical rock materials [D]. Changsha: National University of Defense Technology, 2021.
    [23] 李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学(北京), 2016.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology (Beijing), 2016.
    [24] 胡春亚. 基于方差膨胀因子的衰老矿井通风系统优化指标体系的研究与应用 [D]. 徐州: 中国矿业大学, 2016.

    HU C Y. Research and application of index system optimizition of aging mine ventilation based on variance inflation factor [D]. Xuzhou: China University of Mining and Technology, 2016.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  63
  • PDF下载量:  29
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-01-21
  • 网络出版日期:  2025-03-06
  • 刊出日期:  2025-06-05

目录

    /

    返回文章
    返回