基于数据预处理和改进麻雀算法的岩爆预测

张鼎 周宗红

张鼎, 周宗红. 基于数据预处理和改进麻雀算法的岩爆预测[J]. 高压物理学报, 2025, 39(7): 075301. doi: 10.11858/gywlxb.20240964
引用本文: 张鼎, 周宗红. 基于数据预处理和改进麻雀算法的岩爆预测[J]. 高压物理学报, 2025, 39(7): 075301. doi: 10.11858/gywlxb.20240964
ZHANG Ding, ZHOU Zonghong. Rock Burst Prediction Based on Data Preprocessing and Improved Sparrow Algorithm[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 075301. doi: 10.11858/gywlxb.20240964
Citation: ZHANG Ding, ZHOU Zonghong. Rock Burst Prediction Based on Data Preprocessing and Improved Sparrow Algorithm[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 075301. doi: 10.11858/gywlxb.20240964

基于数据预处理和改进麻雀算法的岩爆预测

doi: 10.11858/gywlxb.20240964
基金项目: 国家自然科学基金(52264019)
详细信息
    作者简介:

    张 鼎(1998-),男,硕士研究生,主要从事采矿与岩石力学研究. E-mail:1441460925@qq.com

    通讯作者:

    周宗红(1967-),男,博士,教授,主要从事采矿与岩石力学研究. E-mail:zhou20051001@163.com

  • 中图分类号: O382; TD311; O521.9

Rock Burst Prediction Based on Data Preprocessing and Improved Sparrow Algorithm

  • 摘要: 为解决机器学习岩爆预测中存在离群样本、样本不均衡、麻雀搜索算法易陷入局部最优等问题,从数据预处理和算法改进2个角度建立岩爆预测模型。首先,基于岩性条件和应力条件,选取围岩最大切向应力、抗压强度、抗拉强度和弹性能量指数作为特征指标,采用3种机器学习算法,结合5折交叉验证方法构建预测模型。在数据预处理阶段,收集了174组国内外岩爆案例建立数据库,针对离群样本,引入局部离群因子(LOF)算法,根据岩爆等级逐级检测并剔除离群样本;针对样本不均衡问题,引入自适应过采样方法(ADASYN)增加少数类样本数目。采用3种混合策略改进麻雀搜索算法,利用改进的麻雀搜索算法(ISSA)对极限梯度提升树(XGBoost)、随机森林(RF)、多层感知机(MLP)3种机器学习算法参数寻优,分析准确率、精确率等多个评价指标,对模型进行有效性验证。结果表明,新构建的最优模型ISSA-XGBoost的准确率达到了94.12%,具有较高的预测准确率。此外,对4种特征指标进行特征重要性分析,确定了围岩最大切向应力是最重要特征。

     

  • 图  原始数据统计学关系

    Figure  1.  Statistical relationship of raw data

    图  数据集中岩爆等级的分布

    Figure  2.  Distribution of rock burst grade in data set

    图  离群样本散点图(σθmaxσc

    Figure  3.  Scatter plot of outlier samples (σθmaxσc)

    图  不同测试函数收敛曲线

    Figure  4.  Convergence curves of different test functions

    图  交叉验证和目标函数计算

    Figure  5.  Cross-validation and objective function calculation

    图  岩爆预测模型流程图

    Figure  6.  Flow chart of rock burst prediction model

    图  SHAP特征摘要

    Figure  7.  Summary of SHAP features

    图  特征重要性分析

    Figure  8.  Feature importance analysis

    表  1  岩爆经典案例

    Table  1.   Classic rock burst cases

    Sample σθmax/MPa σc/MPa σt/MPa λwet Rock burst grade
    1 18.80 178.00 7.40 5.70
    2 31.05 147.85 3.00 11.96
    3 91.43 157.63 6.27 11.96
    4 61.91 92.40 5.43 8.28
    5 58.20 83.60 5.90 2.60
    6 60.00 136.79 2.12 10.42
    7 44.40 120.00 5.10 5.00
    170 61.46 135.67 9.02 11.20
    172 110.55 106.20 9.59 12.51
    172 41.90 143.01 6.68 4.30
    173 109.40 190.00 6.10 6.90
    174 48.00 59.00 5.23 0.88
    下载: 导出CSV

    表  2  岩爆分类等级特征描述

    Table  2.   Characteristics of rock burst grade

    Rock burst
    grade
    Feature description
    Motion feature Sweep depth/m Acoustic signature
    No rockburst activities 0 No sound
    Rock deforms, cracks or spalls, but no ejection
    phenomenon occurs
    <0.5 Weak sound
    Rock deforms and fractures with a considerable amount
    of chip ejecting, loosening and sudden destruction
    0.5–1.0 Crisp crackling
    Rock deforms and fractures with a considerable amount
    of chip ejecting, loosening and sudden destruction
    >1.0 Strong bursts and
    roaring sounds
    下载: 导出CSV

    表  3  岩爆分级标准

    Table  3.   Rock burst classification criteria

    Rock burst grade Rock burst evaluation index
    σθmax/MPa σc/MPa σt/MPa λwet
    0–24 0–80 0–5 0–2.0
    24–60 80–120 5–7 2.0–3.5
    60–126 120–180 7–9 3.5–5.0
    126–200 180–320 9–30 5.0–20.0
    下载: 导出CSV

    表  4  数据集统计参数

    Table  4.   Statistical parameters of data sets

    Rock burst index σθmax/MPa σc/MPa σt/MPa λwet
    Maximum value221.00200.7222.6017.13
    Minimum value3.8015.500.700.88
    Mean value50.42113.684.946.16
    Standard deviation29.4238.512.883.57
    Sample size174174174174
    下载: 导出CSV

    表  5  剔除离群样本

    Table  5.   Removes outlier samples

    Sample No. σθmax/MPa (outlier value) Rock burst grade Sample No. σθmax/MPa (outlier value) Rock burst grade
    11 108.40 95 75.60
    25 110.35 96 59.77
    36 2.60 122 119.69
    下载: 导出CSV

    表  6  算法参数

    Table  6.   Algorithm parameters

    PSO GWO GA SSA ISSA
    c1=c2=2, w=0.9 a$\in $[0, 2]; r1, r2$\in $[0, 1] Pc=0.8, Pm=0.05 PD=20%, SD=10%,
    S=0.8
    PD=20%, SD=10%,
    S=0.8, wmin=1, wmax=3
    下载: 导出CSV

    表  7  测试函数

    Table  7.   Test functions

    Function Type Value range Optimal solution
    F1 Sphere [–100, 100] 0
    F2 Schwefel′2.22 [–10, 10] 0
    F3 Schwefel′1.2 [–100, 100] 0
    F4 Quartic [–1.28, 1.28] 0
    F5 Rastrigrin [–5.12, 5.12] 0
    F6 Ackley [–32, 32] 0
    F7 Griewing [–600, 600] 0
    F8 Foxholes [–65, 65] 1
    下载: 导出CSV

    表  8  ISSA与经典算法实验结果的对比

    Table  8.   ISSA experimental results compared with classical algorithms

    Algorithm Mean value
    F1 F2 F3 F4 F5 F6 F7 F8
    PSO 1.21×103 1.84×1010 5.42×1010 6.20×109 8.18×1010 6.52×1010 1.45×108 2.21×109
    GWO 1.23×103 2.19×1011 2.63×1011 1.93×1010 2.88×106 6.40×108 1.31×1010 2.10×108
    GA 8.28×103 3.66×1011 3.12×1011 7.00×1011 7.97×108 6.17×107 1.64×1011 3.19×1011
    SSA 5.60×10−3 2.50×10−2 1.71×10−2 7.74×10−2 7.02×10−2 5.19×10−2 2.23×10−2 4.15×10−2
    ISSA 6.11×10−4 1.39×10−2 1.08×10−2 1.75×10−2 0 7.67×10−3 0 2.87×10−2
    Algorithm Standard deviation
    F1 F2 F3 F4 F5 F6 F7 F8
    PSO 7.21×103 4.11×1011 1.21×1012 1.39×1011 1.83×1012 1.46×1012 3.25×109 4.94×1010
    GWO 7.71×103 4.88×1012 5.88×1012 3.52×1011 4.54×107 1.20×1010 2.89×1011 4.08×109
    GA 1.41×104 5.58×1012 6.80×1012 9.64×1012 1.43×1010 4.46×108 2.14×1012 5.11×1012
    SSA 6.32×10−2 3.01×10−1 2.95×10−1 9.80×10−1 8.46×10−1 7.58×10−1 2.15×10−1 5.78×10−1
    ISSA 8.20×10−3 1.47×10−1 1.89×10−1 2.75×10−1 0 7.48×10−2 0 4.48×10−1
    下载: 导出CSV

    表  9  数据预处理前后3种机器学习模型准确率

    Table  9.   Accuracy of three machine learning models before and after data preprocessing

    Data class Model accuracy/%
    MLP RF XGBoost
    Raw rock burst data set 55.17 60.34 62.07
    Preprocessing rock burst data set 63.22 74.71 77.59
    下载: 导出CSV

    表  10  SSA改进前后模型预测结果的对比

    Table  10.   Comparison of model prediction results before and after SSA improvement

    Algorithm Rock burst grade Precision rate Recall rate F1 value Sample size/group
    SSA-MLP
    (Accuracy, 82.36%)
    1.00 1.00 1.00 13
    0.75 0.75 0.75 12
    0.80 0.68 0.74 12
    0.75 0.86 0.80 14
    SSA-RF
    (Accuracy, 84.31%)
    1.00 1.00 1.00 13
    1.00 0.83 0.91 12
    0.68 0.68 0.68 12
    0.75 0.86 0.80 14
    SSA-XGBoost
    (Accuracy, 87.00%)
    0.83 0.92 0.87 13
    0.91 0.77 0.83 12
    0.82 0.75 0.78 12
    0.85 0.93 0.89 14
    ISSA-MLP
    (Accuracy, 86.25%)
    1.00 1.00 1.00 13
    0.83 0.83 0.83 12
    0.80 0.68 0.74 12
    0.81 0.93 0.87 14
    ISSA-RF
    (Accuracy, 88.24%)
    1.00 0.92 0.96 13
    0.84 0.83 0.83 12
    0.79 0.91 0.85 12
    0.92 0.86 0.89 14
    ISSA-XGBoost
    (Accuracy, 94.12%)
    1.00 1.00 1.00 13
    1.00 0.83 0.91 12
    0.80 1.00 0.89 12
    1.00 0.93 0.96 14
    下载: 导出CSV
  • [1] 田睿. 基于机器学习的岩爆烈度等级预测模型研究与应用 [D]. 包头: 内蒙古科技大学, 2020.

    TIAN R. Research and application of rockburst intensity classification prediction model based on machine learning algorithms [D]. Baotou: Inner Mongolia University of Science and Technology, 2020.
    [2] 刘剑, 周宗红, 刘军, 等. 基于主成分分析和改进Bayes判别的岩爆等级预测 [J]. 采矿与岩层控制工程学报, 2022, 4(5): 053014. doi: 10.13532/j.jmsce.cn10-1638/td.2022.05.004

    LIU J, ZHOU Z H, LIU J, et al. Prediction of rockburst grade based on principal component analysis and improved Bayesian discriminant analysis [J]. Journal of Mining and Strata Control Engineering, 2022, 4(5): 053014. doi: 10.13532/j.jmsce.cn10-1638/td.2022.05.004
    [3] 孙飞跃, 刘希亮, 郭佳奇, 等. 岩爆预测评估方法的动力数值分析 [J]. 应用力学学报, 2022, 39(1): 26–34. doi: 10.11776/j.issn.1000-4939.2022.01.004

    SUN F Y, LIU X L, GUO J Q, et al. Dynamic numerical calculation analysis of rockburst prediction assessment methods [J]. Chinese Journal of Applied Mechanics, 2022, 39(1): 26–34. doi: 10.11776/j.issn.1000-4939.2022.01.004
    [4] 曲宏略, 刘哲言, 杨龙, 等. 基于应力判据的隧道岩爆预测评估研究 [J]. 地下空间与工程学报, 2020, 16(Suppl 2): 934–938,956.

    QU H L, LIU Z Y, YANG L, et al. Prediction and evaluation of rock burst in tunnel based on stress criterion [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl 2): 934–938,956.
    [5] DOU L M, CAI W, CAO A Y, et al. Comprehensive early warning of rock burst utilizing microseismic multi-parameter indices [J]. International Journal of Mining Science and Technology, 2018, 28(5): 767–774. doi: 10.1016/j.ijmst.2018.08.007
    [6] CAO A Y, JING G C, DING Y L, et al. Mining-induced static and dynamic loading rate effect on rock damage and acoustic emission characteristic under uniaxial compression [J]. Safety Science, 2019, 116: 86–96. doi: 10.1016/j.ssci.2019.03.003
    [7] 温廷新, 陈依琳. 基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型 [J]. 中国安全科学学报, 2022, 32(11): 38–46. doi: 10.16265/j.cnki.issn1003-3033.2022.11.1915

    WEN T X, CHEN Y L. Prediction model of rockburst intensity grade based on Hellinger distance and AHDPSO-ELM [J]. China Safety Science Journal, 2022, 32(11): 38–46. doi: 10.16265/j.cnki.issn1003-3033.2022.11.1915
    [8] 李明亮, 李克钢, 秦庆词, 等. 岩爆烈度等级预测的机器学习算法模型探讨及选择 [J]. 岩石力学与工程学报, 2021, 40(Suppl 1): 2806−2816.

    LI M L, LI K G, QIN Q C, et al. Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction [J]. Chinese Journal of Rock Mechanics and Engineering, 201, 40(Suppl 1): 2806−2816.
    [9] 侯克鹏, 包广拓, 孙华芬. 改进的MVO-GRNN神经网络岩爆预测模型研究 [J]. 安全与环境学报, 2024, 24(3): 923–932. doi: 10.13637/j.issn.1009-6094.2023.0341

    HOU K P, BAO G T, SUN H F. Research on improved MVO-GRNN neural network rockburst prediction model [J]. Journal of Safety and Environment, 2024, 24(3): 923–932. doi: 10.13637/j.issn.1009-6094.2023.0341
    [10] 满轲, 武立文, 刘晓丽, 等. 基于灰色关联分析和SSA-RF模型的岩爆等级预测 [J]. 金属矿山, 2023(5): 202–212. doi: 10.19614/j.cnki.jsks.202305021

    MAN K, WU L W, LIU X L, et al. Rockburst grade prediction based on grey correlation analysis and SSA-RF model [J]. Metal Mine, 2023(5): 202–212. doi: 10.19614/j.cnki.jsks.202305021
    [11] 高梅, 张成良, 张华超, 等. 基于SMOTEENN-CGAN-Stacking的岩爆烈度等级预测研究 [J]. 工程地质学报, 2024, 32(6): 2264–2276. doi: 10.13544/j.cnki.jeg.2024-0112

    GAO M, ZHANG C L, ZHANG H C, et al. Rockburst intensity level prediction based on SMOTEENN-CGAN-Stakcing [J]. Journal of Engineering Geology, 2024, 32(6): 2264–2276. doi: 10.13544/j.cnki.jeg.2024-0112
    [12] 苏焕博. 数据缺失和不均衡下的IDPSO-ELM岩爆烈度等级预测模型研究 [D]. 阜新: 辽宁工程技术大学, 2022.

    SU H B. Research on IDPSO-ELM rockburst intensity grade prediction model with missing and unbalanced data [D]. Fuxin: Liaoning Technical University, 2022.
    [13] ZHOU J, LI X, MITRI H S. Classification of rockburst in underground projects: comparison of ten supervised learning methods [J]. Journal of Computing in Civil Engineering, 2016, 30(5): 04016003. doi: 10.1061/(ASCE)CP.1943-5487.0000553
    [14] 武立文. 基于SSA-RF模型的岩爆预测方法及应用研究 [D]. 北京: 北方工业大学, 2024.

    WU L W. Research on rockburst prediction method and application based on SSA-RF model [D]. Beijing: North China University of Technology, 2024.
    [15] 刘晓悦, 杨伟, 张雪梅. 基于改进层次法与CRITIC法的多维云模型岩爆预测 [J]. 湖南大学学报(自然科学版), 2021, 48(2): 118–124. doi: 10.16339/j.cnki.hdxbzkb.2021.02.015

    LIU X Y, YANG W, ZHANG X M. Rockburst prediction of multi-dimensional cloud model based on improved hierarchical analytic method and critic method [J]. Journal of Hunan University (Natural Sciences), 2021, 48(2): 118–124. doi: 10.16339/j.cnki.hdxbzkb.2021.02.015
    [16] 谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测 [J]. 岩石力学与工程学报, 2021, 40(6): 1186–1194. doi: 10.13722/j.cnki.jrme.2020.1035

    TAN W K, YE Y C, HU N Y, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186–1194. doi: 10.13722/j.cnki.jrme.2020.1035
    [17] 王宇航, 周宗红, 李国才, 等. 基于数据预处理的岩爆等级预测模型及精度优化 [J]. 矿业研究与开发, 2024, 44(11): 101–109. doi: 10.13827/j.cnki.kyyk.2024.11.009

    WANG Y H, ZHOU Z H, LI G C, et al. Prediction model and accuracy optimization of rockburst grade based on data preprocessing [J]. Mining Research and Development, 2024, 44(11): 101–109. doi: 10.13827/j.cnki.kyyk.2024.11.009
    [18] 翁嘉诚, 周晓杰, 叶蓓蕾, 等. 基于改进麻雀搜索算法的K-means聚类 [J]. 数学的实践与认识, 2024, 54(2): 152–166.

    WENG J C, ZHOU X J, YE B L, et al. K-means clustering based on improved sparrow search [J]. Mathematics in Practice and Theory, 2024, 54(2): 152–166.
    [19] 杜云, 周志奇, 贾科进, 等. 混合多项自适应权重的混沌麻雀搜索算法 [J]. 计算机工程与应用, 2024, 60(7): 70–83. doi: 10.3778/j.issn.1002-8331.2307-0254

    DU Y, ZHOU Z Q, JIA K J, et al. Chaotic sparrow search algorithm with mixed multinomial adaptive weights [J]. Computer Engineering and Applications, 2024, 60(7): 70–83. doi: 10.3778/j.issn.1002-8331.2307-0254
    [20] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法 [J]. 计算机科学与探索, 2021, 15(6): 1155–1164. doi: 10.3778/j.issn.1673-9418.2010032

    MAO Q H, ZHANG Q. Improved sparrow algorithm combining cauchy mutation and opposition-based learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155–1164. doi: 10.3778/j.issn.1673-9418.2010032
    [21] 张建涛, 刘志祥, 张双侠, 等. 基于WOA-RF的边坡稳定性预测模型 [J]. 高压物理学报, 2024, 38(3): 035301. doi: 10.11858/gywlxb.20230837

    ZHANG J T, LIU Z X, ZHANG S X, et al. Slope stability prediction based on WOA-RF hybrid model [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035301. doi: 10.11858/gywlxb.20230837
  • 加载中
图(8) / 表(10)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  42
  • PDF下载量:  16
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-03-04
  • 录用日期:  2025-04-25
  • 网络出版日期:  2025-03-11
  • 刊出日期:  2025-07-07

目录

    /

    返回文章
    返回