Damage Effect of RC Frame-Masonry Wall Structures Subjected to Internal Explosion
-
摘要: 基于1/3缩尺2层钢筋混凝土(reinforced concrete,RC)框架-砌体墙结构内爆炸试验和LS-DYNA软件,探究RC框架-砌体墙结构构件在内爆炸荷载作用下的动力响应、毁伤特征和破坏模式。首先,利用内爆炸试验结果验证数值建模方法、材料本构模型和模型算法的准确性。其次,通过模拟结果分析内爆炸冲击波的传播过程以及填充墙对建筑构件毁伤程度的影响。最后,结合不同TNT当量下含填充墙框架结构的数值模拟结果,重点分析其结构构件的动力响应和损伤破坏。以0.249 kg当量工况为例,相较于梁、柱,砌体墙和楼板的破坏更为严重,呈重度毁伤状态;梁板交接区域相较于梁、柱节点更容易发生破坏,产生冲切裂缝;纯框架结构构件的峰值位移相较于含砌体填充墙框架相应位置峰值位移减少了60%以上。另外,楼板的破坏模式将随当量的增大而转变:当比例爆距为1.283 5 m/kg1/3时,楼板发生弯曲破坏;当比例爆距减小至1.143 8 m/kg1/3时,楼板发生弯切破坏;当比例爆距达到1.016 8 m/kg1/3时,楼板发生冲切破坏。当TNT当量为0.370 kg时,楼板和砌体墙完全毁伤,梁板交接区域大部分断开,梁、柱仅轻度毁伤;当TNT当量为7.400 kg时,大部分构件的毁伤程度达到严重毁伤以上。对于RC框架结构的抗爆设计,砌体墙宜涂覆防爆材料,楼板钢筋宜设计双层双向,在梁板交接区域适当加设拉结钢筋,由此提高结构面临小当量内爆炸荷载作用时的整体性。Abstract: Conducting 1/3 scale two-story reinforced concrete frame-masonry wall structure internal explosion tests and simulation, the dynamic response, damage characteristics and failure modes of structural components under internal explosion loads were studied. Firstly, the modeling method and the material constitutive model in the numerical simulation were verified by internal explosion test results. Secondly, the propagation process of the internal explosion shock wave and the influence of infill walls on the damage degree of building components were analyzed through the numerical simulation. Finally, frame structures with infill walls under different equivalent charges were carried out to investigate the dynamic response and damage of structural components. Taking 0.249 kg equivalent condition as an example, the damage of masonry wall and floor is more serious than that of beam and column, which is in a state of severe damage. Compared with beam and column joints, the beam-slab transition area is more prone to damage and produce punching cracks. The peak displacement of the pure frame structure member is reduced by more than 60% compared with the peak displacement of the corresponding position of the frame with masonry infilled wall. The failure mode of the floor varies with the increase in the equivalent proportional distance. Specifically, the bending failure occurs when the proportional distance exceeds 1.283 5 m/kg1/3, while the flexural-shear failure is observed at a proportional distance of 1.143 8 m/kg1/3. Additionally, when the proportional distance reaches 1.016 8 m/kg1/3, the punching failure occurs. In the case where the explosive charge amounts to 0.370 kg, the floor slabs and masonry walls are subjected to complete devastation. The vast majority of the beam-slab junction areas are completely severed, whereas the beams and columns merely incur slight damage. When the equivalent charge reaches 7.400 kg, the vast majority of building components reach a state of severe damage or even complete destruction. For the anti-explosion design, the masonry wall should be coated with explosion-proof materials, the floor reinforcement should be designed in double-layer two-way, and the tie bar should be appropriately added in the beam-slab transition area to improve the integrity of the structure when it faces small equivalent internal explosion load.
-
表 1 混凝土材料参数
Table 1. Concrete material parameters
$ \rho $/(kg·m −3) G/GPa A1 N fc/MPa ft* fs* 2 320 16.7 1.6 0.61 40 0.1 0.18 表 2 HRB400钢筋材料参数
Table 2. HRB400 rebar material parameters
$ \rho $/(kg·m −3) E/GPa $ \nu $ σ/GPa Et/MPa C P 7 800 207 0.3 400 1 100 40 5 表 3 砖墙材料参数
Table 3. Brick wall material parameters
$ \rho $/(kg·m −3) E/MPa $ \mathit{\nu} $ fn/MPa fs/MPa gc β η 2 100 8 925 0.31 1.35 0.88 140 0.03 72 400 表 4 空气材料参数
Table 4. Air material parameters
$ \rho $/(kg·m −3) E0/(J·m−3) pc μ C0 C1 C2 C3 C4 C5 C6 1.29 2.5×105 0 0 0 0 0 0 0.4 0.4 0 表 5 炸药材料参数
Table 5. Explosive material parameters
$ \rho $/(kg·m −3) D/(m·s−1) pCJ/GPa A2/GPa B/GPa $ {{R}}_{{1}} $ $ {{R}}_{{2}} $ $ { \omega } $ 1 630 6 930 21 373.8 3.747 4.15 0.9 0.35 表 6 工况设置及数值模拟结果
Table 6. Test conditions and numerical simulation results
Component number Blast distance/m Equivalent/kg Scaled distance/(m·kg−1/3) Damage mode L2, L5, L6, L9 1.20 0.370 1.671 5 Ⅰ, Ⅰ, Ⅰ, Ⅰ L2, L5, L6, L9 1.20 1.840 0.979 3 Ⅲ, Ⅰ, Ⅰ, Ⅰ L2, L5, L6, L9 1.20 3.700 0.775 9 Ⅳ, Ⅰ, Ⅱ, Ⅰ L2, L5, L6, L9 1.20 7.400 0.615 8 Ⅳ, Ⅲ, Ⅲ, Ⅱ Z2, Z3, Z6, Z7 1.43 0.370 1.991 9 Ⅰ, Ⅰ, Ⅰ, Ⅰ Z2, Z3, Z6, Z7 1.43 1.840 1.167 0 Ⅲ, Ⅱ, Ⅰ, Ⅰ Z2, Z3, Z6, Z7 1.43 3.700 0.924 6 Ⅳ, Ⅳ, Ⅱ, Ⅰ Z2, Z3, Z6, Z7 1.43 7.400 0.733 8 Ⅳ, Ⅳ, Ⅳ, Ⅳ -
[1] 高康华, 金丰年, 王德荣, 等. 建筑物内爆炸荷载研究综述 [J]. 中国工程科学, 2013, 15(5): 59–64. doi: 10.3969/j.issn.1009-1742.2013.05.010GAO K H, JIN F N, WANG D R, et al. Review on internal explosion loading of building [J]. Strategic Study of CAE, 2013, 15(5): 59–64. doi: 10.3969/j.issn.1009-1742.2013.05.010 [2] WANG W, WEI G S, WANG X, et al. Structural damage assessment of RC slab strengthened with POZD coated steel plate under contact explosion [J]. Structures, 2023, 48: 31–39. doi: 10.1016/j.istruc.2022.12.090 [3] 龚顺风, 金伟良, 何勇. 内部爆炸荷载作用下钢筋混凝土板的动力响应研究 [J]. 振动工程学报, 2008, 21(5): 516–520. doi: 10.3969/j.issn.1004-4523.2008.05.016GONG S F, JIN W L, HE Y. Dynamic response of reinforced concrete slab subjected to internal blast loading [J]. Journal of Vibration Engineering, 2008, 21(5): 516–520. doi: 10.3969/j.issn.1004-4523.2008.05.016 [4] ZHENG C, KONG X S, WU W G, et al. Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading [J]. International Journal of Impact Engineering, 2018, 113: 144–160. doi: 10.1016/j.ijimpeng.2017.11.013 [5] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012. [6] WANG W, XU Z W, WANG Y P, et al. Influence of explosive shape on the response of steel plates under blast loading [J]. Journal of Structural Engineering, 2024, 150(6): 04024055. doi: 10.1061/JSENDH.STENG-13252 [7] 伍俊, 闫秋实. 框架结构承重柱内爆炸作用下的破坏与损伤研究 [J]. 防护工程, 2011, 33(5): 24–29.WU J, YAN Q S. Study of breakage and damage of the main column of a frame structure subjected to internal explosion [J]. Protective Engineering, 2011, 33(5): 24–29. [8] 刘中辉, 匡志平. 内爆炸下扁平大空间中柱表面荷载的确定 [J]. 结构工程师, 2023, 39(6): 44–53. doi: 10.3969/j.issn.1005-0159.2023.06.006LIU Z H, KUANG Z P. Determination of surface blast loading of middle column in a flat large space under internal explosion [J]. Structural Engineers, 2023, 39(6): 44–53. doi: 10.3969/j.issn.1005-0159.2023.06.006 [9] GUO X K, LI Y, MCCRUM D P, et al. A reinforced concrete shear wall building structure subjected to internal TNT explosions: test results and numerical validation [J]. International Journal of Impact Engineering, 2024, 190: 104950. doi: 10.1016/j.ijimpeng.2024.104950 [10] 柏准, 胡玉涛, 钱秉文, 等. 多次内爆炸荷载下剪力墙累积毁伤破坏试验 [J]. 兵工学报, 2023, 44(Suppl 1): 50–58. doi: 10.12382/bgxb.2023.0768BAI Z, HU Y T, QIAN B W, et al. Experimental study on cumulative damage of shear wall under multiple internal explosions [J]. Acta Armamentarii, 2023, 44(Suppl 1): 50–58. doi: 10.12382/bgxb.2023.0768 [11] 曹宇航, 张晓伟, 张庆明. 内部爆炸载荷作用下砌体墙结构的失效规律 [J]. 高压物理学报, 2022, 36(2): 85–95. doi: 10.11858/gywlxb.20210810CAO Y H, ZHANG X W, ZHANG Q M. Failure characteristics of masonry wall under internal explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 85–95. doi: 10.11858/gywlxb.20210810 [12] 陈公轻, 吴昊, 吕晋贤, 等. 爆炸荷载作用下砌体填充墙对RC框架结构损伤破坏的影响 [J]. 振动与冲击, 2024, 43(3): 93–104, 157.CHEN G Q, WU H, LV J X, et al. Effects of masonry infilled walls on damage and failure of RC frame structure under explosive load [J]. Journal of Vibration and Shock, 2024, 43(3): 93–104, 157. [13] 高超, 宗周红, 伍俊. 爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究 [J]. 土木工程学报, 2013, 46(7): 9–20.GAO C, ZONG Z H, WU J. Experimental study on progressive collapse failure of RC frame structures under blast loading [J]. China Civil Engineering Journal, 2013, 46(7): 9–20. [14] 丁阳, 汪明, 李忠献, 等. 利用等效砌体材料模型分析爆炸荷载作用下砌体墙碎片尺寸分布 [J]. 工程力学, 2010, 27(7): 186–191, 204.DING Y, WANG M, LI Z X, et al. Analysis of fragment size distribution of masonry wall under blast loads using homogenized masonry material [J]. Engineering Mechanics, 2010, 27(7): 186–191, 204. [15] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981−984. [16] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究 [D]. 西安: 长安大学, 2012.HAN X. The dynamic response of brick masonry wall subjected to gas explosion load [D]. Xi’an: Chang’an University, 2012. [17] 许三罗. 爆炸荷载作用下砌体结构响应的有限元分析 [J]. 防灾减灾工程学报, 2007, 27(3): 357–362. doi: 10.3969/j.issn.1672-2132.2007.03.019XU S L. Finite element analysis of response of masonry wall under blast loading [J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(3): 357–362. doi: 10.3969/j.issn.1672-2132.2007.03.019 [18] 谢奕. 爆炸载荷下框架建筑的毁伤效应研究 [D]. 太原: 中北大学, 2023.XIE Y. Research on damage effect of frame building under explosion load [D]. Taiyuan: North University of China, 2023. -

下载: