金属氧化物对铝热剂燃烧特性的影响

蔡悦 刘雪莉 贺川 刘金旭

蔡悦, 刘雪莉, 贺川, 刘金旭. 金属氧化物对铝热剂燃烧特性的影响[J]. 高压物理学报, 2025, 39(9): 091301. doi: 10.11858/gywlxb.20240956
引用本文: 蔡悦, 刘雪莉, 贺川, 刘金旭. 金属氧化物对铝热剂燃烧特性的影响[J]. 高压物理学报, 2025, 39(9): 091301. doi: 10.11858/gywlxb.20240956
CAI Yue, LIU Xueli, HE Chuan, LIU Jinxu. Effect of Metal Oxides on the Combustion Characteristics of Al-Based Thermite[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 091301. doi: 10.11858/gywlxb.20240956
Citation: CAI Yue, LIU Xueli, HE Chuan, LIU Jinxu. Effect of Metal Oxides on the Combustion Characteristics of Al-Based Thermite[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 091301. doi: 10.11858/gywlxb.20240956

金属氧化物对铝热剂燃烧特性的影响

doi: 10.11858/gywlxb.20240956
基金项目: 国家自然科学基金(52473246)
详细信息
    作者简介:

    蔡 悦(1996-),女,博士研究生,主要从事含能材料及其毁伤性能应用研究. E-mail:cyue1212@163.com

    通讯作者:

    刘金旭(1982-),男,博士,教授,主要从事毁伤与防护材料设计研发与应用研究. E-mail:liujinxu@bit.edu.cn

  • 中图分类号: O383; O521.9; TQ560.1

Effect of Metal Oxides on the Combustion Characteristics of Al-Based Thermite

  • 摘要: 为了探究金属氧化物种类对铝热剂燃烧特性的影响,选取了Bi2O3、Fe2O3、MnO2、CuO和MoO3 5种金属氧化物,采用液相混合制备了二元铝热剂,对5种铝热剂的反应热值、自蔓延燃烧特性、反应压力与点火延迟时间等燃烧特性进行了系统研究。结果表明:金属氧化物种类对铝热剂的燃烧特性有显著影响;Al-MoO3具有最高反应热(氩气中为(4.10±0.05) kJ/g)、火焰蔓延速率((18.77±1.23) m/s)、火焰温度以及最短的点火延迟时间((1.15±0.06) s);Al-Bi2O3表现出最高的压力峰值和升压速率,压力峰值分别为Al-CuO、Al-MnO2、Al-Fe2O3、Al-MoO3的1.9、3.5、14.6、24.3倍。通过选择合适的金属氧化剂,可以实现铝热剂燃烧特性调控,为其在军事和工业领域应用提供参考。

     

  • 图  Al和5种氧化物的SEM图像

    Figure  1.  SEM images of Al and five oxides

    图  5种铝热剂的SEM图像

    Figure  2.  SEM images of five Al-based thermites

    图  不同气氛下5种铝热剂的反应热值

    Figure  3.  Reaction energy of five Al-based thermites in different atmospheres

    图  5种铝热剂燃烧过程的高速图像序列

    Figure  4.  High-speed image sequences of combustion processes of five Al-based thermites

    图  5种铝热剂的火焰蔓延速率

    Figure  5.  Flame spread rates of five Al-based thermites

    图  5种铝热剂燃烧过程的最高火焰温度-时间曲线

    Figure  6.  Maximum flame temperature-time curves of five Al-based thermites

    图  铝热剂的压力-时间变化曲线

    Figure  7.  Pressure performance versus time curves of Al-based thermites

    图  铝热剂反应过程中电压信号与光电信号随时间变化曲线

    Figure  8.  Curves of voltage signal and photoelectric signals versus time during the reaction of Al-based thermites

    图  铝热剂的燃烧性能雷达图

    Figure  9.  Radar chart of combustion performances of different Al-based thermites

    表  1  铝热剂的成分配比

    Table  1.   Composition ratio of different Al-based thermites

    ThermitesMass fraction of Al/%Mass fraction of metal oxides/%
    Al-MnO22971
    Al-Fe2O32575
    Al-Bi2O31090
    Al-CuO1882
    Al-MoO32773
    下载: 导出CSV

    表  2  5种铝热剂的反应热及反应效率

    Table  2.   Reaction energy and efficiencies of five Al-based thermites

    ThermitesReaction energy in ArReaction energy in O2/(kJ·g–1)
    Theoretical/(kJ·g–1)Measured/(kJ·g–1)Efficiency/%
    Al-MnO24.863.94±0.0381.10±0.628.46±0.08
    Al-Fe2O33.973.64±0.0291.70±1.067.78±0.02
    Al-Bi2O32.111.75±0.0482.90±0.483.39±0.06
    Al-CuO4.133.51±0.0285.00±0.515.91±0.06
    Al-MoO34.704.10±0.0587.20±0.478.09±0.07
    下载: 导出CSV

    表  3  5种铝热剂的反应压力特性和产物金属的沸点

    Table  3.   Pressure characteristics and boiling points of product metals of five Al-based thermites

    Thermites Peak pressure/MPa Pressure rise rate/(MPa·s–1) Product metals Boiling point of product/℃
    Al-MnO2 0.21±0.04 14.0±3.0 Mn 2061
    Al-Fe2O3 0.05±0.01 1.0±0.3 Fe 2750
    Al-Bi2O3 0.73±0.07 2486.0±244.0 Bi 1564
    Al-CuO 0.38±0.06 141.0±21.0 Cu 2562
    Al-MoO3 0.03±0.01 4.0±1.5 Mo 4639
    下载: 导出CSV
  • [1] HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization [J]. Advanced Materials, 2018, 30(41): 1706293. doi: 10.1002/adma.201706293
    [2] ZHANG S, LIU J X, YANG M, et al. Effects of multi-component co-addition on reaction characteristics and impact damage properties of reactive material [J]. Materials & Design, 2018, 153: 1–8. doi: 10.1016/j.matdes.2018.04.077
    [3] CHEN J L, GUO T, SONG J X, et al. The characteristics of combustion reactions involving thermite under different shell materials [J]. RSC Advances, 2020, 10(56): 33762–33769. doi: 10.1039/D0RA05415A
    [4] BRATTON K R, HILL K J, WOODRUFF C, et al. Tailoring impact debris dispersion using intact or fragmented thermite projectiles [J]. Journal of Applied Physics, 2020, 128(15): 155108. doi: 10.1063/5.0023990
    [5] JOSEFSON B L, BISSCHOP R, MESSAADI M, et al. Residual stresses in thermite welded rails: significance of additional forging [J]. Welding in the World, 2020, 64(7): 1195–1212. doi: 10.1007/s40194-020-00912-4
    [6] MA X X, LI Y X, HUSSAIN I, et al. Core-shell structured nanoenergetic materials: preparation and fundamental properties [J]. Advanced Materials, 2020, 32(30): 2001291. doi: 10.1002/adma.202001291
    [7] DENG S L, JIANG Y, HUANG S D, et al. Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches [J]. Combustion and Flame, 2018, 195: 303–310. doi: 10.1016/j.combustflame.2018.04.028
    [8] GLAVIER L, TATON G, DUCÉRÉ J M, et al. Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE [J]. Combustion and Flame, 2015, 162(5): 1813–1820. doi: 10.1016/j.combustflame.2014.12.002
    [9] SHIN M S, KIM J K, KIM J W, et al. Reaction characteristics of Al/Fe2O3 nanocomposites [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1768–1773. doi: 10.1016/j.jiec.2012.04.003
    [10] 陈嘉琳, 郭涛, 姚淼, 等. 含不同形貌MoO3的Al/MoO3铝热剂的热性能和燃烧性能 [J]. 含能材料, 2022, 30(2): 121–129. doi: 10.11943/CJEM2021105

    CHEN J L, GUO T, YAO M, et al. Thermal properties and combustion properties of Al/MoO3 thermite containing MoO3 with different morphologies [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 121–129. doi: 10.11943/CJEM2021105
    [11] MARTIROSYAN K S, WANG L, VICENT A, et al. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use [J]. Nanotechnology, 2009, 20(40): 405609. doi: 10.1088/0957-4484/20/40/405609
    [12] HE W, LYU J Y, TANG D Y, et al. Control the combustion behavior of solid propellants by using core-shell Al-based composites [J]. Combustion and Flame, 2020, 221: 441–452. doi: 10.1016/j.combustflame.2020.07.006
    [13] ZHU Z Y, MA B, TANG C M, et al. Molecular dynamic simulation of thermite reaction of Al nanosphere/Fe2O3 nanotube [J]. Physics Letters A, 2016, 380(1/2): 194–199. doi: 10.1016/j.physleta.2015.09.041
    [14] SONG J X, GUO T, YAO M, et al. A comparative study of thermal kinetics and combustion performance of Al/CuO, Al/Fe2O3 and Al/MnO2 nanothermites [J]. Vacuum, 2020, 176: 109339. doi: 10.1016/j.vacuum.2020.109339
    [15] ZHUANG Z H, XU K D, LIU B Z, et al. Improved reactivity and energy release performance of core-shell structured fuel-rich Si/PTFE energetic composites [J]. Combustion and Flame, 2023, 255: 112889. doi: 10.1016/j.combustflame.2023.112889
    [16] LIU Z H, HE C, ZHUANG Z H, et al. Ignition and energy release performance of dual-oxidant Al/MnO2/CuO ternary thermites under rapid heating conditions [J]. Propellants, Explosives, Pyrotechnics, 2024, 49(7): e202400005. doi: 10.1002/prep.202400005
    [17] YANG C, WANG W Y, LI Y H, et al. Quantitative study on chemical effects of actual/simulated recirculated exhaust gases on ignition delay times of n-heptane/ethanol fuel blends at elevated temperature [J]. Fuel, 2020, 263: 116327. doi: 10.1016/j.fuel.2019.116327
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  117
  • PDF下载量:  35
出版历程
  • 收稿日期:  2024-12-07
  • 修回日期:  2025-03-28
  • 网络出版日期:  2025-04-01
  • 刊出日期:  2025-09-05

目录

    /

    返回文章
    返回