体心偏移BCC晶格结构的力学性能与能量吸收

戴鹏 张宁 田晓耕

戴鹏, 张宁, 田晓耕. 体心偏移BCC晶格结构的力学性能与能量吸收[J]. 高压物理学报, 2025, 39(8): 084202. doi: 10.11858/gywlxb.20240951
引用本文: 戴鹏, 张宁, 田晓耕. 体心偏移BCC晶格结构的力学性能与能量吸收[J]. 高压物理学报, 2025, 39(8): 084202. doi: 10.11858/gywlxb.20240951
DAI Peng, ZHANG Ning, TIAN Xiaogeng. Mechanical Properties and Energy Absorption in Body-Centered Offset BCC Lattice Structures[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 084202. doi: 10.11858/gywlxb.20240951
Citation: DAI Peng, ZHANG Ning, TIAN Xiaogeng. Mechanical Properties and Energy Absorption in Body-Centered Offset BCC Lattice Structures[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 084202. doi: 10.11858/gywlxb.20240951

体心偏移BCC晶格结构的力学性能与能量吸收

doi: 10.11858/gywlxb.20240951
基金项目: 国家自然科学基金(11732007)
详细信息
    作者简介:

    戴 鹏(1999-),男,硕士,主要从事轻质点阵结构吸能特性研究. E-mail:pengdai1222@stu.xjtu.edu.cn

    通讯作者:

    田晓耕(1967-),男,博士,教授,主要从事超轻结构吸能、非经典热弹理论研究. E-mail:tiansu@mail.xjtu.edu.cn

  • 中图分类号: O347; TB124; O521.9

Mechanical Properties and Energy Absorption in Body-Centered Offset BCC Lattice Structures

  • 摘要: 轻量化点阵结构具有出色的强度、刚度和能量吸收能力,被广泛应用于抗冲击吸能装置。受到孔隙率梯度点阵结构的启发,通过调节节点刚度提升其性能,探索通过等距离体心偏移调控体心立方(body-centered cubic,BCC)晶格结构在力学性能和能量吸收方面的表现。数值模拟结果表明,等距离偏移BCC晶格的比吸能、刚度和平台应力均优于传统BCC晶格和体心线性增量偏移BCC晶格。通过有限元方法进一步分析了体心偏移方向和偏移量对BCC晶格压缩性能和比吸能的影响。结果表明:沿压缩方向的体心偏移对刚度和强度的影响更为显著;随着偏移量的增加,BCC晶格结构的应变硬化效果更明显;与传统BCC晶格相比,体心沿3个垂直方向各偏移1 mm时,BCC结构的比吸能增加169%。此外,基于塑性铰理论推导的偏心BCC晶体的平台应力可为高性能结构设计提供有效参考。

     

  • 图  体心偏移BCC晶格的几何模型

    Figure  1.  Geometric models of the body-centered offset lattice

    图  BCC-X晶格的有限元模型及不同网格下的应力-应变曲线

    Figure  2.  Finite element model and the stress-strain curves for different meshes of the BCC-X lattice

    图  PA12的工程应力-应变曲线[20]

    Figure  3.  Engineering stress-strain curve of the PA12[20]

    图  BCC晶格的实验[22]与数值模拟结果对比

    Figure  4.  Comparison between experimental[22]and simulation results of the BCC lattice

    图  BCC、BCC-X0.6与BCC-X1.2变形模式的对比

    Figure  5.  Comparison of deformation modes of BCC, BCC-X0.6 and BCC-X1.2

    图  不同X方向偏移量下传统BCC和BCC-X的力学响应

    Figure  6.  Mechanical response of traditional BCC and BCC-X with different offset in X-direction

    图  X方向偏移量对BCC-X晶格力学性能的影响

    Figure  7.  Effect of X-direction offset on mechanical properties of the BCC-X lattice

    图  相对密度对BCC-X晶格相对弹性模量E/Es的影响

    Figure  8.  Effect of relative density on the relative elastic modulus E/Es of the BCC-X lattices

    图  BCC-X1.2晶格单胞的变形

    Figure  9.  Deformation of the BCC-X1.2 lattice cell

    图  10  BCC-X1.2平台应力的数值模拟结果与理论解对比

    Figure  10.  Comparison between simulation result and theoretical result of plateau stress for the BCC-X1.2

    图  11  BCC-XY设计策略示意图

    Figure  11.  Schematic diagram of the BCC-XY design strategy

    图  12  BCC-X1.2与BCC-XY1.2变形模式对比

    Figure  12.  Comparison of deformation modes of BCC-X1.2 and BCC-XY1.2

    图  13  BCC-X1.2和BCC-XY1.2的力学响应

    Figure  13.  Mechanical response of BCC-X1.2 and BCC-XY1.2

    图  14  BCC-Z设计策略示意图

    Figure  14.  Schematic diagram of the BCC-Z design strategy

    图  15  BCC与BCC-Z1.2变形模式对比

    Figure  15.  Comparison of deformation modes of BCC and BCC-Z1.2

    图  16  传统BCC和Z方向不同偏移量BCC-Z的力学响应

    Figure  16.  Mechanical response of traditional BCC and BCC-Z with different offset in the Z-direction

    图  17  BCC-XZ设计策略示意图

    Figure  17.  Schematic diagram of the BCC-XZ design strategy

    图  18  BCC-XZ1.2和BCC-Z1.2变形模式对比

    Figure  18.  Comparison of deformation modes of BCC-XZ1.2 and BCC-Z1.2

    图  19  BCC-X1.2、BCC-Z1.2和BCC-XZ1.2的力学响应

    Figure  19.  Mechanical response of BCC-X1.2, BCC-Z1.2, and BCC-XZ1.2

    图  20  XZ方向体心偏移量对BCC晶格性能的影响

    Figure  20.  Effect of body-centered offset on the performance of the BCC lattice in X and Z directions

    图  21  XYZ空间方向的体心偏移量对BCC晶格性能的影响

    Figure  21.  Effect of body-centered offset on the performance of BCC lattice in XYZ space

    表  1  BCC晶格的实验[22]与数值模拟结果比较

    Table  1.   Comparison of experiment[22] and simulation results of the BCC lattice

    MethodElastic modulus/MPaPlateau stress/MPa
    Exp.[22]1.2620.169
    Sim.1.3760.182
    Error/%9.037.69
    下载: 导出CSV
  • [1] KORONIS G, SILVA A, FONTUL M. Green composites: a review of adequate materials for automotive applications [J]. Composites Part B: Engineering, 2013, 44(1): 120–127. doi: 10.1016/j.compositesb.2012.07.004
    [2] YAN C Z, HAO L, HUSSEIN A, et al. Evaluations of cellular lattice structures manufactured using selective laser melting [J]. International Journal of Machine Tools and Manufacture, 2012, 62: 32–38. doi: 10.1016/j.ijmachtools.2012.06.002
    [3] ZHANG L C, ATTAR H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review [J]. Advanced Engineering Materials, 2016, 18(4): 463–475. doi: 10.1002/adem.201500419
    [4] ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review [J]. Composites Part B: Engineering, 2020, 201: 108340. doi: 10.1016/j.compositesb.2020.108340
    [5] ZHANG H, SUN W F. Mechanical behavior and crashworthiness assessment of corrugated inner rib reinforced tubular structures [J]. Thin-Walled Structures, 2023, 189: 110894. doi: 10.1016/J.TWS.2023.110894
    [6] EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals [J]. Progress in Materials Science, 2001, 46(3/4): 309–327. doi: 10.1016/S0079-6425(00)00016-5
    [7] ASHBY M F. The properties of foams and lattices [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 15–30. doi: 10.1098/rsta.2005.1678
    [8] ANDREW J J, VERMA P, KUMAR S. Impact behavior of nanoengineered, 3D printed plate-lattices [J]. Materials & Design, 2021, 202: 109516. doi: 10.1016/j.matdes.2021.109516
    [9] REN Y, LIU Z F, CAI S Y, et al. Mechanical properties and deformation behaviors of layered-hybrid lattice structure fabricated by selective laser melting [J]. Advanced Engineering Materials, 2024, 26(1): 2301040. doi: 10.1002/ADEM.202301040
    [10] SUN Z P, GUO Y B, SHIM V P W. Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures—effects of cell topology and material anisotropy [J]. Thin-Walled Structures, 2021, 169: 108420. doi: 10.1016/j.tws.2021.108420
    [11] LIU C, LERTTHANASARN J, PHAM M S. The origin of the boundary strengthening in polycrystal-inspired architected materials [J]. Nature Communications, 2021, 12(1): 4600. doi: 10.1038/s41467-021-24886-z
    [12] YE J J, SUN Z P, DING Y Y, et al. The deformation mechanism, energy absorption behavior and optimal design of vertical-reinforced lattices [J]. Thin-Walled Structures, 2023, 190: 110988. doi: 10.1016/j.tws.2023.110988
    [13] WANG P, YANG F, LU G X, et al. Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing [J]. Composites Part B: Engineering, 2022, 234: 109724. doi: 10.1016/j.compositesb.2022.109724
    [14] 王润洲, 张越, 李世强. 组合点阵材料GBCC-BCC变形机制及力学性能分析 [J]. 中国科学: 物理学 力学 天文学, 2023, 53(4): 244611. doi: 10.1360/SSPMA-2022-0314

    WANG R Z, ZHANG Y, LI S Q. Analysis of the deformation mechanism and mechanical properties of graded body-centered cubic nested body-centered cubic lattice material [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2023, 53(4): 244611. doi: 10.1360/SSPMA-2022-0314
    [15] MA X D, ZHANG N, ZHANG C L, et al. Mechanical behavior of a novel lattice structure with two-step deformation [J]. Thin-Walled Structures, 2024, 197: 111580. doi: 10.1016/J.TWS.2024.111580
    [16] GUO S, MA Y W, LIU P, et al. Mechanical properties of lattice structures with a central cube: experiments and simulations [J]. Materials, 2024, 17(6): 1329. doi: 10.3390/MA17061329
    [17] SMITH M, GUAN Z, CANTWELL W J. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique [J]. International Journal of Mechanical Sciences, 2013, 67: 28–41. doi: 10.1016/j.ijmecsci.2012.12.004
    [18] BAYKASOĞLU A, BAYKASOĞLU C, CETIN E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes [J]. Thin-Walled Structures, 2020, 149: 106630. doi: 10.1016/j.tws.2020.106630
    [19] ZHANG N, MA X D, CHANG Y J, et al. A lattice structure with adjustable mechanical behavior constructed by rotating triangles translated out of plane and splicing each other [J]. International Journal of Solids and Structures, 2024, 292: 112740. doi: 10.1016/J.IJSOLSTR.2024.112740
    [20] BIAN Y J, YANG F, ZHANG S Y, et al. Similarities of the mechanical responses of body-centered cubic lattice structures with different constituent materials under compression [J]. JOM, 2022, 74(4): 1774–1783. doi: 10.1007/s11837-021-04926-1
    [21] DENG X L, QIN S G, HUANG J L. Crashworthiness analysis of gradient hierarchical multicellular columns evolved from the spatial folding [J]. Materials & Design, 2022, 215: 110435. doi: 10.1016/j.matdes.2022.110435
    [22] ZHANG S Y, YANG F, LI P H, et al. A topologically gradient body centered lattice design with enhanced stiffness and energy absorption properties [J]. Engineering Structures, 2022, 263: 114384. doi: 10.1016/J.ENGSTRUCT.2022.114384
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  108
  • PDF下载量:  31
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2025-02-17
  • 刊出日期:  2025-08-05

目录

    /

    返回文章
    返回