榫卯式多孔柱的单轴压缩力学行为与吸能特性分析

张晓蕾 马思逸 李新波 李旺斐 邓庆田

张晓蕾, 马思逸, 李新波, 李旺斐, 邓庆田. 榫卯式多孔柱的单轴压缩力学行为与吸能特性分析[J]. 高压物理学报, 2025, 39(7): 074203. doi: 10.11858/gywlxb.20240949
引用本文: 张晓蕾, 马思逸, 李新波, 李旺斐, 邓庆田. 榫卯式多孔柱的单轴压缩力学行为与吸能特性分析[J]. 高压物理学报, 2025, 39(7): 074203. doi: 10.11858/gywlxb.20240949
ZHANG Xiaolei, MA Siyi, LI Xinbo, LI Wangfei, DENG Qingtian. Mechanical Behaviors and Energy Absorption Characteristics of Mortise and Tenon Porous Columns under Uniaxial Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074203. doi: 10.11858/gywlxb.20240949
Citation: ZHANG Xiaolei, MA Siyi, LI Xinbo, LI Wangfei, DENG Qingtian. Mechanical Behaviors and Energy Absorption Characteristics of Mortise and Tenon Porous Columns under Uniaxial Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074203. doi: 10.11858/gywlxb.20240949

榫卯式多孔柱的单轴压缩力学行为与吸能特性分析

doi: 10.11858/gywlxb.20240949
基金项目: 长安大学中央高校基本科研业务费专项资金(300102124501);材料成形与模具技术全国重点实验室开放基金(P2024-030)
详细信息
    作者简介:

    张晓蕾(2001-),女,本科,主要从事吸能结构研究. E-mail:2021900944@chd.edu.cn

    通讯作者:

    邓庆田(1980-),男,博士,副教授,主要从事多孔材料与结构力学性能研究. E-mail:dengqt@chd.edu.cn

  • 中图分类号: O341; O521.9

Mechanical Behaviors and Energy Absorption Characteristics of Mortise and Tenon Porous Columns under Uniaxial Compressive Loading

  • 摘要: 将传统木结构建筑的榫卯连接方法引入多孔柱中,在保持多孔柱的孔隙率相同的情况下,探究了连接方式、高度、孔型和孔数对结构力学行为和吸能特性的影响;通过试验测试和有限元模拟计算,研究了多孔柱模型在单轴压缩作用下的力学行为和能量吸收性能。结果表明:榫卯式多孔结构在实现快速装配的同时,内凹形模型的后期承载力较好,六边形孔型模型的承载力和吸能特性较好,单孔模型的承载力较好,多孔模型的吸能特性较好。

     

  • 图  2种基本模型示意图

    Figure  1.  Schematic diagrams of the two basic models

    图  组装模型与基本部件结构示意图(以Con-110-19为例)

    Figure  2.  Schematic diagram of the assembly model and basic part structure (taking Con-110-19 as an example)

    图  试验设备与试件制备

    Figure  3.  Test equipment and specimen preparation

    图  装配体模型的相互作用和载荷及网格划分示意图

    Figure  4.  Schematic diagram of the assembly, interaction, and load with meshing

    图  榫卯式多孔柱结构下压30 mm的模拟结果

    Figure  5.  Simulation results of mortise-and-tenon porous column structure compressed by 30 mm

    图  采取不同连接方式的模型的承载力-位移曲线

    Figure  6.  Load-displacement curves of models with different connection modes

    图  单轴压缩试验过程

    Figure  7.  Uniaxial compression test process

    图  考虑高度因素时模型的承载力-位移曲线

    Figure  8.  Force-displacement curves of models with different heights

    图  考虑高度因素模型的单轴压缩试验

    Figure  9.  Uniaxial compression tests with modification of the height factor

    图  10  考虑高度因素模型下压30 mm的模拟应力云图和试验结果

    Figure  10.  Stress contour and test results with modification of the height under 30 mm lower pressure

    图  11  考虑孔型因素模型的承载力-位移曲线

    Figure  11.  Load carrying capacity-displacement curve for different hole shape

    图  12  不同孔型条件下模型下压30 mm的模拟结果

    Figure  12.  Simulation results of models with different hole shape compressed by 30 mm

    图  13  不同孔数条件下模型的承载力-位移曲线

    Figure  13.  Load-displacement curves of models with different number of holes

    图  14  考虑孔数因素模型下压30 mm的模拟结果

    Figure  14.  Simulation results of models with different number of holes compressed by 30 mm

    表  1  榫卯式多孔柱模型

    Table  1.   Mortise-and-tenon porous column model

    Hole pattern Height/mm Hole number Model Hole pattern Height/mm Hole number Model
    Regular hexagon 70 1 Hex-70-1 Concave 70 1 Con-70-1
    70 7 Hex-70-7 70 7 Con-70-7
    70 19 Hex-70-19 70 19 Con-70-19
    90 1 Hex-90-1 90 1 Con-90-1
    90 7 Hex-90-7 90 7 Con-90-7
    90 19 Hex-90-19 90 19 Con-90-19
    110 1 Hex-110-1 110 1 Con-110-1
    110 7 Hex-110-7 110 7 Con-110-7
    110 19 Hex-110-19 110 19 Con-110-19
    下载: 导出CSV

    表  2  采取不同连接方式的模型的试验数据

    Table  2.   Test data of models with different connection modes

    Model Maximum force/kN Displacement/mm Model Maximum force/kN Displacement/mm
    Hex-90-1 82.35 2.94 Con-90-1 91.51 3.77
    A-Hex-90-1 95.51 8.25 A-Con-90-1 96.94 7.71
    Hex-90-7 77.62 3.51 Con-90-7 58.59 9.17
    A-Hex-90-7 106.13 12.99 A-Con-90-7 122.27 4.13
    下载: 导出CSV

    表  3  采用不同连接方式的模型的能量吸收数据

    Table  3.   Energy absorption data of models with different jointing modes

    Model Ea/kJ Fm/kN Model Ea/kJ Fm/kN
    Hex-90-1 1.80 60.00 Con-90-1 1.54 51.33
    A-Hex-90-1 2.44 81.33 A-Con-90-1 1.97 65.67
    Hex-90-7 1.84 61.33 Con-90-7 1.43 47.67
    A-Hex-90-7 2.85 95.00 A-Con-90-7 2.70 90.00
    下载: 导出CSV

    表  4  模型下压30 mm的试验结果

    Table  4.   Test results of models compressed by 30 mm

    Model Maximum force/kN Displacement/mm Model Maximum force/kN Displacement/mm
    Hex-70-1 83.90 4.48 Con-70-1 79.14 3.90
    Hex-90-1 82.42 4.90 Con-90-1 91.57 4.78
    Hex-110-1 71.41 5.45 Con-110-1 65.71 5.11
    Hex-70-7 75.85 4.33 Con-70-7 68.23 29.80
    Hex-90-7 77.64 4.78 Con-90-7 58.60 10.60
    Hex-110-7 70.76 6.13 Con-110-7 96.94 7.75
    Hex-70-19 80.24 3.95 Con-70-19 74.76 24.88
    Hex-90-19 70.80 21.75 Con-90-19 65.60 29.97
    Hex-110-19 67.76 5.53 Con-110-19 70.34 20.03
    下载: 导出CSV

    表  5  模型下压30 mm的能量吸收数据

    Table  5.   Energy absorption of models compressed by 30 mm

    Model Ea/kJ Fm/kN Model Ea/kJ Fm/kN
    Hex-70-1 1.70 56.67 Con-70-1 1.30 43.33
    Hex-90-1 1.73 57.67 Con-90-1 1.48 49.33
    Hex-110-1 1.03 34.33 Con-110-1 1.43 47.67
    Hex-70-7 1.84 61.33 Con-70-7 1.60 53.33
    Hex-90-7 1.76 58.67 Con-90-7 1.36 45.33
    Hex-110-7 1.64 54.67 Con-110-7 1.97 65.67
    Hex-70-19 2.00 66.67 Con-70-19 1.82 60.67
    Hex-90-19 1.82 60.67 Con-90-19 1.53 51.00
    Hex-110-19 2.20 73.33 Con-110-19 1.71 57.00
    下载: 导出CSV

    表  6  多元线性回归分析结果

    Table  6.   Results of the multiple linear regression analysis

    Implicit variable R2/% P B
    Height Hole patten Hole number Constant
    Force 19.3 0.375 20.833 –3 888.889 –559.524 85 160.714
    Energy uptake 38.4 0.072 2 083.333 –222 222.222 11 111.111 1 734 722.222
    下载: 导出CSV
  • [1] LI S C, ZHOU Z C, LUO H Z, et al. Behavior of traditional Chinese mortise-tenon joints: experimental and numerical insight for coupled vertical and reversed cyclic horizontal loads [J]. Journal of Building Engineering, 2020, 30: 101257. doi: 10.1016/j.jobe.2020.101257
    [2] ZHU Z G, WU F Q, HAO J. Mechanical behavior of a novel precast concrete beam-column joint using the mortise-tenon connection [J]. Sustainability, 2023, 15(19): 14586. doi: 10.3390/su151914586
    [3] 王星, 张献. 榫卯式毂节点半刚性单层球面网壳稳定性及地震响应分析 [J]. 土木工程学报, 2024, 57(10): 1–10.

    WANG X, ZHANG X. Stability and dynamic performance analysis of semi-rigid single-layer spherical reticulated shell with triodetic joints [J]. China Civil Engineering Journal, 2024, 57(10): 1–10.
    [4] ZHANG B Z, XIE Q F, LIU Y J, et al. Effects of gaps on the seismic performance of traditional timber frames with straight mortise-tenon joint: experimental tests, energy dissipation mechanism and hysteretic model [J]. Journal of Building Engineering, 2022, 58: 105019. doi: 10.1016/j.jobe.2022.105019
    [5] PANOUTSOPOULOU L, MOUZAKIS C. Experimental investigation of the behavior of traditional timber mortise-tenon T-joints under monotonic and cyclic loading [J]. Construction and Building Materials, 2022, 348: 128655. doi: 10.1016/j.conbuildmat.2022.128655
    [6] ZHANG H H, ZHANG P, ZHANG W K. A high-output performance mortise and Tenon structure triboelectric nanogenerator for human motion sensing [J]. Nano Energy, 2021, 84: 105933. doi: 10.1016/j.nanoen.2021.105933
    [7] 张武昆, 谭永华, 高玉闪, 等. 周期性轻质多孔结构在能量吸收和振动方面的研究进展 [J]. 振动与冲击, 2023, 42(8): 1–19.

    ZHANG W K, TAN Y H, GAO Y S, et al. Research progress on energy absorption properties and vibration of periodic lightweight porous structures [J]. Journal of Vibration and Shock, 2023, 42(8): 1–19.
    [8] LI Q Q, GAN W J, HU L, et al. Spherical porous structures for axial compression [J]. International Journal of Mechanical Sciences, 2024, 261: 108681. doi: 10.1016/j.ijmecsci.2023.108681
    [9] YIN H F, ZHENG X J, WEN G L, et al. Design optimization of a novel bio-inspired 3D porous structure for crashworthiness [J]. Composite Structures, 2021, 255: 112897. doi: 10.1016/j.compstruct.2020.112897
    [10] 杜义贤, 李荣, 田启华, 等. 具有吸能和承载特性的多孔结构拓扑优化 [J]. 华中科技大学学报(自然科学版), 2019, 47(8): 108–113.

    DU Y X, LI R, TIAN Q H, et al. Topological optimization of porous structure with energy absorption and loading capability [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(8): 108–113.
    [11] 黄浩, 崔海林, 田晓丽, 等. 多孔结构对冲击波的衰减影响研究 [J]. 机械设计与制造工程, 2024, 53(1): 11–15. doi: 10.3969/j.issn.2095-509X.2024.01.003

    HUANG H, CUI H L, TIAN X L, et al. Study on the effect of porous structure on shock wave attenuation [J]. Machine Design and Manufacturing Engineering, 2024, 53(1): 11–15. doi: 10.3969/j.issn.2095-509X.2024.01.003
    [12] GAO J S, WANG X, TONG J W, et al. Large size translucent wood fiber reinforced PMMA porous composites with excellent thermal, acoustic and energy absorption properties [J]. Composites Communications, 2022, 30: 101059. doi: 10.1016/j.coco.2022.101059
    [13] YAN L L, ZHU K Y, CHEN N, et al. Energy-absorption characteristics of tube-reinforced absorbent honeycomb sandwich structure [J]. Composite Structures, 2021, 255: 112946. doi: 10.1016/j.compstruct.2020.112946
    [14] 杜晓晓. 木质衍生碳复合电极在微型超级电容器中的应用研究 [D]. 青岛: 青岛科技大学, 2023.

    DU X X. Research on the application of wood derived carbon composite electrode in micro-supercapacitors [D]. Qingdao: Qingdao University of Science and Technology, 2023.
    [15] 成瑶. “预埋种子-外延生长”策略制备无机-有机复合材料及其性能研究 [D]. 北京: 北京化工大学, 2019.

    CHENG Y. Study of preparation and application of inorganic-organic materials by “seeds embedded epitaxial growth” strategy [D]. Beijing: Beijing University of Chemical Technology, 2019.
    [16] 张宽, 郭晓宁, 张晓晶. 夹层结构榫卯T型接头弯曲破坏机理试验研究 [J]. 复合材料科学与工程, 2021(8): 95–99.

    ZHANG K, GUO X N, ZHANG X J. Experimental study on failure mechanism of sandwich T-joint by tenon-and-mortise subjected to flexure [J]. Composites Science and Engineering, 2021(8): 95–99.
    [17] 李腾, 邓庆田, 李新波, 等. 多孔柱准静态压缩力学行为和吸能特性分析 [J]. 塑性工程学报, 2022, 29(2): 204–211. doi: 10.3969/j.issn.1007-2012.2022.02.029

    LI T, DENG Q T, LI X B, et al. Analysis of quasi-static compression mechanical behavior and energy absorption characteristics of porous columns [J]. Journal of Plasticity Engineering, 2022, 29(2): 204–211. doi: 10.3969/j.issn.1007-2012.2022.02.029
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  22
  • PDF下载量:  7
出版历程
  • 收稿日期:  2024-11-28
  • 修回日期:  2025-01-20
  • 录用日期:  2025-04-23
  • 网络出版日期:  2025-06-26
  • 刊出日期:  2025-07-07

目录

    /

    返回文章
    返回