| [1] |
段卓平, 白志玲, 黄风雷. 非均质固体炸药冲击起爆与爆轰研究进展 [J]. 火炸药学报, 2020, 43(3): 237–253. doi: 10.14077/j.issn.1007-7812.202006017DUAN Z P, BAI Z L, HUANG F L. Advances in shock initiation and detonation of heterogeneous solid explosives [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 237–253. doi: 10.14077/j.issn.1007-7812.202006017
|
| [2] |
裴红波, 李淑睿, 郭文灿, 等. 基于反向撞击法的RDX基含铝炸药冲击起爆实验研究 [J]. 含能材料, 2023, 31(5): 425–430. doi: 10.11943/CJEM2021285PEI H B, LI S R, GUO W C, et al. Shock initiation measurement of RDX-based aluminized explosives with reverse-impact method [J]. Chinese Journal of Energetic Materials, 2023, 31(5): 425–430. doi: 10.11943/CJEM2021285
|
| [3] |
白志玲, 段卓平, 黄风雷. 高聚物黏结炸药冲击起爆统计热点反应速率模型 [J]. 兵工学报, 2021, 42(11): 2379–2387. doi: 10.3969/j.issn.1000-1093.2021.11.011BAI Z L, DUAN Z P, HUANG F L. A statistical hot spot reaction rate model for shock initiation of PBX [J]. Acta Armamentarii, 2021, 42(11): 2379–2387. doi: 10.3969/j.issn.1000-1093.2021.11.011
|
| [4] |
于继东, 王文强, 刘仓理, 等. 炸药冲击响应的二维细观离散元模拟 [J]. 爆炸与冲击, 2008, 28(6): 488–493. doi: 10.3321/j.issn:1001-1455.2008.06.002YU J D, WANG W Q, LIU C L, et al. Two-dimensional mesoscale discrete element simulation of shock response of explosives [J]. Explosion and Shock Waves, 2008, 28(6): 488–493. doi: 10.3321/j.issn:1001-1455.2008.06.002
|
| [5] |
王晨, 陈朗, 刘群, 等. 多组分PBX炸药细观结构冲击点火数值模拟 [J]. 爆炸与冲击, 2014, 34(2): 167–173. doi: 10.11883/1001-1455(2014)02-0167-07WANG C, CHEN L, LIU Q, et al. Numerical simulation for analyzing shock to ignition of PBXs with different compositions in meso-structural level [J]. Explosion and Shock Waves, 2014, 34(2): 167–173. doi: 10.11883/1001-1455(2014)02-0167-07
|
| [6] |
WEI Y C, RANJAN R, ROY U, et al. Integrated Lagrangian and Eulerian 3D microstructure-explicit simulations for predicting macroscopic probabilistic SDT thresholds of energetic materials [J]. Computational Mechanics, 2019, 64(2): 547–561. doi: 10.1007/s00466-019-01729-9
|
| [7] |
COFFELT C, OLSEN D, MILLER C, et al. Effect of void positioning on the detonation sensitivity of a heterogeneous energetic material [J]. Journal of Applied Physics, 2022, 131(6): 065101. doi: 10.1063/5.0081188
|
| [8] |
YARRINGTON C D, WIXOM R R, DAMM D L. Shock interactions with heterogeneous energetic materials [J]. Journal of Applied Physics, 2018, 123(10): 105901. doi: 10.1063/1.5022042
|
| [9] |
CHOI S, KIM B, HAN S, et al. Multiscale modeling of transients in the shock-induced detonation of heterogeneous energetic solid fuels [J]. Combustion and Flame, 2020, 221: 401–415. doi: 10.1016/j.combustflame.2020.08.012
|
| [10] |
MILLER C, OLSEN D, WEI Y C, et al. Three-dimensional microstructure-explicit and void-explicit mesoscale simulations of detonation of HMX at millimeter sample size scale [J]. Journal of Applied Physics, 2020, 127(12): 125105. doi: 10.1063/1.5136234
|
| [11] |
OLSEN D, ZHOU M. Shock-to-detonation transition behavior of functionally graded energetic materials [J]. Journal of Applied Physics, 2023, 134(11): 115901. doi: 10.1063/5.0160553
|
| [12] |
BARUA A, KIM S, HORIE Y, et al. Prediction of probabilistic ignition behavior of polymer-bonded explosives from microstructural stochasticity [J]. Journal of Applied Physics, 2013, 113(18): 184907. doi: 10.1063/1.4804251
|
| [13] |
KIM S, WEI Y C, HORIE Y, et al. Prediction of shock initiation thresholds and ignition probability of polymer-bonded explosives using mesoscale simulations [J]. Journal of the Mechanics and Physics of Solids, 2018, 114: 97–116. doi: 10.1016/j.jmps.2018.02.010
|
| [14] |
AKIKI M, GALLAGHER T P, MENON S. Mechanistic approach for simulating hot-spot formations and detonation in polymer-bonded explosives [J]. AIAA Journal, 2017, 55(2): 585–598. doi: 10.2514/1.J054898
|
| [15] |
LI D Y, ELALEM K, ANDERSON M J, et al. A microscale dynamical model for wear simulation [J]. Wear, 1999, 225(Pt 1): 380−386.
|
| [16] |
JACKSON T L, ZHANG J. Density-based kinetics for mesoscale simulations of detonation initiation in energetic materials [J]. Combustion Theory and Modelling, 2017, 21(4): 749–769. doi: 10.1080/13647830.2017.1296975
|
| [17] |
JACKSON T L, JOST A M D, ZHANG J, et al. Multi-dimensional mesoscale simulations of detonation initiation in energetic materials with density-based kinetics [J]. Combustion Theory and Modelling, 2018, 22(2): 291–315. doi: 10.1080/13647830.2017.1401121
|
| [18] |
MCGLAUN J M, THOMPSON S L, ELRICK M G. CTH: a three-dimensional shock wave physics code [J]. International Journal of Impact Engineering, 1990, 10(1/2/3/4): 351–360. doi: 10.1016/0734-743X(90)90071-3
|
| [19] |
AUSTIN R A, BARTON N R, HOWARD W M, et al. Modeling pore collapse and chemical reactions in shock loaded HMX crystals [J]. Journal of Physics: Conference Series, 2014, 500: 052002. doi: 10.1088/1742-6596/500/5/052002
|
| [20] |
NAJJAR F M, HOWARD W M, FRIED L E, et al. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive [J]. AIP Conference Proceedings, 2012, 1426(1): 255–258. doi: 10.1063/1.3686267
|
| [21] |
LEVESQUE G, VITELLO P, HOWARD W M. Hot-spot contributions in shocked high explosives from mesoscale ignition models [J]. Journal of Applied Physics, 2013, 113(23): 233513. doi: 10.1063/1.4811233
|
| [22] |
于继东. 炸药冲击响应的二维细观离散元模拟 [D]. 绵阳: 中国工程物理研究院, 2007.YU J D. Two-dimensional mesoscale discrete element simulation of shock response of explosives [D]. Miangyang: China Academy of Engineering Physics, 2007.
|
| [23] |
尚海林. 非均质炸药冲击载荷作用下热点形成的离散元模拟研究 [D]. 绵阳: 中国工程物理研究院, 2009.SHANG H L. Discrete element simulation of hot spot formation under shock loading of heterogeneous explosives [D]. Miangyang: China Academy of Engineering Physics, 2009.
|
| [24] |
刘超, 石艺娜, 梁仙红. 冲击作用下非均质炸药热点形成的离散元方法 [J]. 计算物理, 2014, 31(5): 523–530. doi: 10.3969/j.issn.1001-246X.2014.05.003LIU C, SHI Y N, LIANG X H. DEM study on hot spots formation of heterogeneous explosives under shock loading [J]. Chinese Journal of Computational Physics, 2014, 31(5): 523–530. doi: 10.3969/j.issn.1001-246X.2014.05.003
|
| [25] |
KROONBLAWD M P, FRIED L E. High explosive ignition through chemically activated nanoscale shear bands [R]. Livermore, United States: Lawrence Livermore National Laboratory, 2020.
|
| [26] |
JARAMILLO E, SEWELL T D, STRACHAN A. Atomic-level view of inelastic deformation in a shock loaded molecular crystal [J]. Physical Review B, 2007, 76(6): 064112. doi: 10.1103/PhysRevB.76.064112
|
| [27] |
CAWKWELL M J, SEWELL T D, ZHENG L Q, et al. Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations [J]. Physical Review B, 2008, 78(1): 014107. doi: 10.1103/PhysRevB.78.014107
|
| [28] |
HAMILTON B W, GERMANN T C. Influence of pore surface structure and contents on shock-induced collapse and energy localization [J]. The Journal of Physical Chemistry C, 2023, 127(20): 9887–9895. doi: 10.1021/acs.jpcc.3c01556
|
| [29] |
LIU R Q, WU Y Q, WANG X J, et al. Shock-induced energy localization and reaction growth considering chemical-inclusions effects for crystalline explosives [J]. Defence Technology, 2024, 33: 278–294. doi: 10.1016/j.dt.2023.02.011
|
| [30] |
KROONBLAWD M P, FRIED L E. High explosive ignition through chemically activated nanoscale shear bands [J]. Physical Review Letters, 2020, 124(20): 206002. doi: 10.1103/PhysRevLett.124.206002
|
| [31] |
IZVEKOV S, RICE B M. Bottom-up coarse-grain modeling of plasticity and nanoscale shear bands in α-RDX [J]. The Journal of Chemical Physics, 2021, 155(6): 064503. doi: 10.1063/5.0057223
|
| [32] |
IZVEKOV S, RICE B M. Microscopic mechanism of nanoscale shear bands in an energetic molecular crystal (α-RDX): a first-order structural phase transition [J]. Physical Review B, 2022, 106(10): 104109. doi: 10.1103/PhysRevB.106.104109
|
| [33] |
DING K, WANG X J, HUANG F L. Shock-induced nanoscale pore collapse and hotspot in cyclotetramethylene tetranitramine (HMX) [J]. International Journal of Mechanical Sciences, 2024, 281: 109644. doi: 10.1016/j.ijmecsci.2024.109644
|
| [34] |
LEE PERRY W, CLEMENTS B, MA X, et al. Relating microstructure, temperature, and chemistry to explosive ignition and shock sensitivity [J]. Combustion and Flame, 2018, 190: 171–176. doi: 10.1016/j.combustflame.2017.11.017
|
| [35] |
KHASAINOV B A, ERMOLAEV B S, PRESLES H N, et al. On the effect of grain size on shock sensitivity of heterogeneous high explosives [J]. Shock Waves, 1997, 7(2): 89–105. doi: 10.1007/s001930050066
|
| [36] |
WEN L J, DUAN Z P, ZHANG L S, et al. Effects of HMX particle size on the shock initiation of PBXC03 explosive [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(2): 189–194. doi: 10.1515/ijnsns-2011-129
|
| [37] |
AUSTIN R A, BARTON N R, REAUGH J E, et al. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal [J]. Journal of Applied Physics, 2015, 117(18): 185902. doi: 10.1063/1.4918538
|
| [38] |
EASON R M, SEWELL T D. Molecular dynamics simulations of the collapse of a cylindrical pore in the energetic material α-RDX [J]. Journal of Dynamic Behavior of Materials, 2015, 1(4): 423–438. doi: 10.1007/s40870-015-0037-z
|
| [39] |
KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void-void interactions [J]. Shock Waves, 2013, 23(6): 537–558. doi: 10.1007/s00193-013-0439-6
|
| [40] |
KAPAHI A, UDAYKUMAR H S. Three-dimensional simulations of dynamics of void collapse in energetic materials [J]. Shock Waves, 2015, 25(2): 177–187. doi: 10.1007/s00193-015-0548-5
|
| [41] |
FRIED L E, HOWARD W M. An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen [J]. The Journal of Chemical Physics, 1998, 109(17): 7338–7348. doi: 10.1063/1.476520
|
| [42] |
傅华, 赵峰, 谭多望, 等. 冲击作用下HMX晶体孔洞塌缩热点生成机制的细观数值模拟 [J]. 高压物理学报, 2011, 25(1): 8–14. doi: 10.11858/gywlxb.2011.01.002FU H, ZHAO F, TAN D W, et al. Mesoscale simulation of cavity collapse hot spot mechanism in HMX under shock loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 8–14. doi: 10.11858/gywlxb.2011.01.002
|
| [43] |
SPRINGER H K, BASTEA S, NICHOLS III A L, et al. Modeling the effects of shock pressure and pore morphology on hot spot mechanisms in HMX [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(8): 805–817. doi: 10.1002/prep.201800082
|
| [44] |
TRAN L, UDAYKUMAR H S. Simulation of void collapse in an energetic material, part 1: inert case [J]. Journal of Propulsion and Power, 2006, 22(5): 947–958. doi: 10.2514/1.13146
|
| [45] |
LEVESQUE G A, VITELLO P. The effect of pore morphology on hot spot temperature [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 303–308. doi: 10.1002/prep.201400184
|
| [46] |
LIU C, OU Z C, DUAN Z P, et al. Influence of void configurations on hot spot temperature in PBXs under impact loading [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 912–925. doi: 10.1002/prep.202000268
|
| [47] |
LI C Y, STRACHAN A. Shock-induced collapse of porosity, mapping pore size and geometry, collapse mechanism, and hotspot temperature [J]. Journal of Applied Physics, 2022, 132(6): 065901. doi: 10.1063/5.0098808
|
| [48] |
BARUA A, HORIE Y, ZHOU M. Energy localization in HMX-estane polymer-bonded explosives during impact loading [J]. Journal of Applied Physics, 2012, 111(5): 054902. doi: 10.1063/1.3688350
|
| [49] |
WEI Y C, KIM S, HORIE Y, et al. Quantification of probabilistic ignition thresholds of polymer-bonded explosives with microstructure defects [J]. Journal of Applied Physics, 2018, 124(16): 165110. doi: 10.1063/1.5031845
|
| [50] |
TANG L, WANG H F, LU G C, et al. Mesoscale study on the shock response and initiation behavior of Al-PTFE granular composites [J]. Materials & Design, 2021, 200: 109446. doi: 10.1016/j.matdes.2020.109446
|
| [51] |
RAI N K, SCHMIDT M J, UDAYKUMAR H S. Collapse of elongated voids in porous energetic materials: effects of void orientation and aspect ratio on initiation [J]. Physical Review Fluids, 2017, 2(4): 043201. doi: 10.1103/PhysRevFluids.2.043201
|
| [52] |
LI C Y, HAMILTON B W, STRACHAN A. Hotspot formation due to shock-induced pore collapse in 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazoctane (HMX): role of pore shape and shock strength in collapse mechanism and temperature [J]. Journal of Applied Physics, 2020, 127(17): 175902. doi: 10.1063/5.0005872
|
| [53] |
KHAN M, PICU C R. Shear localization in molecular crystal cyclotetramethylene-tetranitramine (β-HMX): constitutive behavior of the shear band [J]. Journal of Applied Physics, 2020, 128(10): 105902. doi: 10.1063/5.0020561
|
| [54] |
LI J H, ZHANG C G, WANG Y, et al. The formation mechanism of twin type shear bands in β-HMX: molecular rotation and translation [J]. Journal of Molecular Modeling, 2024, 30(2): 30. doi: 10.1007/s00894-023-05825-9
|
| [55] |
HAMILTON B W, GERMANN T C. High pressure suppression of plasticity due to an overabundance of shear embryo formation [J]. NPJ Computational Materials, 2024, 10: 147. doi: 10.1038/s41524-024-01348-w
|
| [56] |
BAER M R, KIPP M E, SWOL F V. Micromechanical modeling of heterogeneous energetic materials [R]. Albuquerque, United States: Sandia National Laboratories, 1998.
|
| [57] |
KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 115902. doi: 10.1063/1.4962211
|
| [58] |
AKIKI M, MENON S. A model for hot spot formation in shocked energetic materials [J]. Combustion and Flame, 2015, 162(5): 1759–1771. doi: 10.1016/j.combustflame.2014.11.037
|
| [59] |
MILLER C, KITTELL D, YARRINGTON C, et al. Prediction of probabilistic detonation threshold via millimeter-scale microstructure-explicit and void-explicit simulations [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(2): 254–269. doi: 10.1002/prep.201900214
|
| [60] |
GRESSHOFF M, HROUSIS C A. Probabilistic shock threshold criterion [C]//Proceedings of the 14th International Detonation Symposium. Coeur d’Alene, USA: Lawrence Livermore National Laboratory, 2010.
|
| [61] |
JAMES H R. An Extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8–13. doi: 10.1002/prep.19960210103
|
| [62] |
WALKER E J, WASLEY R J. Critical energy for shock initiation of heterogeneous explosives [J]. Explosivstoffe, 1969, 17(1): 9–13.
|
| [63] |
MILLER C M, SPRINGER H K. Probabilistic effects of porosity and chemical kinetics on the shock initiation of an octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) based explosive [J]. Journal of Applied Physics, 2021, 129(21): 215104. doi: 10.1063/5.0049122
|
| [64] |
温丽晶, 段卓平, 张震宇, 等. 不同加载压力下炸药冲击起爆过程实验和数值模拟研究 [J]. 兵工学报, 2013, 34(3): 283–288. doi: 10.3969/j.issn.1000-1093.2013.03.005WEN L J, DUAN Z P, ZHANG Z Y, et al. Experimental and numerical study on the shock initiation of PBXC03 explosive under the different loading pressure [J]. Acta Armamentarii, 2013, 34(3): 283–288. doi: 10.3969/j.issn.1000-1093.2013.03.005
|
| [65] |
YANO K, HORIE Y, GREENING D. Mechanistic model of hot-spot: a unifying framework [J]. AIP Conference Proceedings, 2002, 620(1): 983–986. doi: 10.1063/1.1483702
|
| [66] |
HAMATE Y, HORIE Y. Ignition and detonation of solid explosives: a micromechanical burn model [J]. Shock Waves, 2006, 16(2): 125–147. doi: 10.1007/s00193-006-0038-x
|
| [67] |
MADER C L, FOREST C A. Two-dimensional homogeneous and heterogeneous detonation wave propagation [R]. New Mexico, United States: Los Alamos National Laboratory, 1976.
|
| [68] |
LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. doi: 10.1063/1.862940
|
| [69] |
JOHNSON J N, TANG P K, FOREST C A. Shock-wave initiation of heterogeneous reactive solids [J]. Journal of Applied Physics, 1985, 57(9): 4323–4334. doi: 10.1063/1.334591
|
| [70] |
STARKENBERG J, DORSEY T M. An assessment of the performance of the history variable reactive burn explosive initiation model in the CTH code [C]//Proceeding of the 11th Symposium (International) on Detonation, Colorado: Snowmass Conference Center, 1998: 621−631.
|
| [71] |
WESCOTT B L, STEWART D S, DAVIS W C. Equation of state and reaction rate for condensed-phase explosives [J]. Journal of Applied Physics, 2005, 98(5): 053514. doi: 10.1063/1.2035310
|
| [72] |
YANG Y, DUAN Z P, LI S R, et al. A new ignition-growth reaction rate model for shock initiation [J]. Defence Technology, 2023, 23: 126–136. doi: 10.1016/j.dt.2022.01.009
|
| [73] |
DUAN Z P, WEN L J, LIU Y, et al. A pore collapse model for hot-spot ignition in shocked multi-component explosives [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(Suppl 1): 19–23. doi: 10.1515/IJNSNS.2010.11.S1.19
|
| [74] |
DESBIENS N, MATIGNON C, SORIN R. Temperature-based model for condensed-phase explosive detonation [J]. Journal of Physics: Conference Series, 2014, 500(15): 152004. doi: 10.1088/1742-6596/500/15/152004
|
| [75] |
ASLAM T D. Shock temperature dependent rate law for plastic bonded explosives [J]. Journal of Applied Physics, 2018, 123(14): 145901. doi: 10.1063/1.5020172
|
| [76] |
HANDLEY C A. The CREST reactive burn model [J]. AIP Conference Proceedings, 2007, 955: 373–376. doi: 10.1063/1.2833061
|
| [77] |
MENIKOFF R, SHAW M S. Reactive burn models and ignition and growth concept [C]//Proceedings of the European Physical Journal Web of Conferences: EPJ Science, 2010.
|
| [78] |
COOK M D, HASKINS P J, STENNETT C. Development and implementation of an ignition and growth model for homogeneous and heterogeneous explosives [R]. Arlinton: Office of Naval Research, 1998: 589−598.
|
| [79] |
KIM K, SOHN C H. Modeling of reaction buildup processes in shocked porous explosives [C]//Proceedings of the 8th Symposium International on Detonation. Albuquerque: Office of Naval Research, 1985: 926−933.
|
| [80] |
KIM K. Development of a model of reaction rates in shocked multicomponent explosives [C]//Proceedings of the 9th Symposium International on Detonation. Sandiego: Office of Naval Research, 1989: 593−603.
|
| [81] |
田占东, 张震宇. PBX-9404炸药冲击起爆细观反应速率模型 [J]. 含能材料, 2007, 15(5): 464–467. doi: 10.3969/j.issn.1006-9941.2007.05.006TIAN Z D, ZHANG Z Y. A mesomechanic model of shock initiation in PBX-9404 explosive [J]. Chinese Journal of Energetic Materials, 2007, 15(5): 464–467. doi: 10.3969/j.issn.1006-9941.2007.05.006
|
| [82] |
温丽晶, 段卓平, 张震宇, 等. 弹黏塑性双球壳塌缩热点反应模型 [J]. 高压物理学报, 2011, 25(6): 493–500. doi: 10.11858/gywlxb.2011.06.003WEN L J, DUAN Z P, ZHANG Z Y, et al. An elastic/viscoplastic pore collapse model of double-layered hollow sphere for hot-spot ignition in shocked explosives [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 493–500. doi: 10.11858/gywlxb.2011.06.003
|
| [83] |
温丽晶, 段卓平, 张震宇, 等. 刚塑性黏结剂的双球壳塌缩热点反应模型 [J]. 北京理工大学学报, 2011, 31(8): 883–887. doi: 10.15918/j.tbit1001-0645.2011.08.003WEN L J, DUAN Z P, ZHANG Z Y, et al. Pore-collapse model of double hollow sphere with rigid-plastic binders for hot-spot ignition in shock explosives [J]. Transactions of Beijing Institute of Technology, 2011, 31(8): 883–887. doi: 10.15918/j.tbit1001-0645.2011.08.003
|
| [84] |
LI S R, DUAN Z P, GAO T Y, et al. Size effect of explosive particle on shock initiation of aluminized 2, 4-dinitroanisole (DNAN)-based melt-cast explosive [J]. Journal of Applied Physics, 2020, 128(12): 125903. doi: 10.1063/5.0016310
|
| [85] |
LI S R, DUAN Z P, ZHANG L S, et al. A melt-cast Duan-Zhang-Kim mesoscopic reaction rate model and experiment for shock initiation of melt-cast explosives [J]. Defence Technology, 2021, 17(5): 1753–1763. doi: 10.1016/j.dt.2020.09.019
|
| [86] |
段卓平, 刘益儒, 欧卓成, 等. 多元混合PBX炸药孔隙塌缩热点模型 [J]. 北京理工大学学报, 2013, 33(8): 771–775. doi: 10.3969/j.issn.1001-0645.2013.08.001DUAN Z P, LIU Y R, OU Z C, et al. A pore collapse hot-spot ignition model for shocked multi-component PBX explosives [J]. Transactions of Beijing Institute of Technology, 2013, 33(8): 771–775. doi: 10.3969/j.issn.1001-0645.2013.08.001
|
| [87] |
LIU Y R, DUAN Z P, ZHANG Z Y, et al. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives [J]. Journal of Hazardous Materials, 2016, 317: 44–51. doi: 10.1016/j.jhazmat.2016.05.052
|
| [88] |
刘益儒. 多元混合PBX炸药冲击起爆细观反应流模型研究 [D]. 北京: 北京理工大学, 2015.LIU Y R. Research on mesoscopic reactive flow model of shock initiation of multi-component PBX [D]. Beijing: Beijing Institute of Technology, 2015.
|
| [89] |
白志玲, 段卓平, 温丽晶, 等. PBX炸药冲击起爆的改进细观反应速率模型 [J]. 含能材料, 2019, 27(8): 629–635. doi: 10.11943/CJEM2018354BAI Z L, DUAN Z P, WEN L J, et al. A modified mesoscopic reaction rate model for shock initiation of PBXs [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 629–635. doi: 10.11943/CJEM2018354
|
| [90] |
白志玲. PBX炸药冲击起爆机理及其系列反应速率模型研究 [D]. 北京: 北京理工大学, 2019.BAI Z L. Physical mechanism and series of chemical reaction rate models for detonation initiation in PBX explosives [D]. Beijing: Beijing Institute of Technology, 2019.
|
| [91] |
BAI Z L, DUAN Z P, WEN L J, et al. Comparative analysis of detonation growth characteristics between HMX- and TATB-based PBXs [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(7): 858–869. doi: 10.1002/prep.201800390
|
| [92] |
BAI Z L, DUAN Z P, WEN L J, et al. Shock initiation of multi-component insensitive PBX explosives: experiments and MC-DZK mesoscopic reaction rate model [J]. Journal of Hazardous Materials, 2019, 369: 62–69. doi: 10.1016/j.jhazmat.2019.02.028
|
| [93] |
SEN O, RAI N K, DIGGS A S, et al. Multi-scale shock-to-detonation simulation of pressed energetic material: a meso-informed ignition and growth model [J]. Journal of Applied Physics, 2018, 124(8): 085110. doi: 10.1063/1.5046185
|
| [94] |
NICHOLS III A L, TARVER C M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives [C]//Proceedings of the 12th International Detonation Symposium. San Diego: Office of Naval Research, 2002.
|
| [95] |
NICHOLS III A L. Statistical hot spot model for explosive detonation [J]. AIP Conference Proceedings, 2006, 845: 465–470. doi: 10.1063/1.2263361
|
| [96] |
HILL L G. The shock-triggered statistical hot spot model [J]. AIP Conference Proceedings, 2012, 1426(1): 307–310. doi: 10.1063/1.3686280
|
| [97] |
DESBIENS N. Modeling of the jack rabbit series of experiments with a temperature based reactive burn model [J]. AIP Conference Proceedings, 2017, 1793(1): 040034. doi: 10.1063/1.4971528
|
| [98] |
REYNAUD M, SORIN R, DUBOIS V, et al. WGT: a mesoscale-informed reactive burn model [J]. Journal of Applied Physics, 2020, 127(6): 065901. doi: 10.1063/1.5135362
|
| [99] |
COCHRAN S G. Statistical treatment of heterogeneous chemical reaction in shock-initiated explosives [R]. Livermore: University of California, 1980.
|
| [100] |
HAMATE Y, HORIE Y. A statistical approach on mechanistic modeling of high-explosive ignition [J]. AIP Conference Proceedings, 2004, 706(1): 335–338. doi: 10.1063/1.1780247
|
| [101] |
LIU C, OU Z C, DUAN Z P, et al. Ubiquitiform hotspot ignition model of PBX for shock initiation [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(10): 1561–1571. doi: 10.1002/prep.202100089
|
| [102] |
SHOW M S, MENIKOFF R. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept [C]//Proceedings of the 14th International Detonation Symposium. Coeur: Los Alamos National Laboratory, 2010.
|
| [103] |
BAI Z L, DUAN Z P, WANG X J, et al. A statistical hot spot reaction rate model for shock initiation of polymer-bonded explosives [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(11): 1723–1732. doi: 10.1002/prep.202100106
|
| [104] |
陈朗, 冯长根, 黄毅民. 含铝炸药圆筒试验及爆轰产物JWL状态方程研究 [J]. 火炸药学报, 2001, 24(3): 13–15. doi: 10.3969/j.issn.1007-7812.2001.03.005CHEN L, FENG C G, HUANG Y M. The cylinder test and JWL equation of state detontion product of aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 13–15. doi: 10.3969/j.issn.1007-7812.2001.03.005
|
| [105] |
KURY J W, HORNIG H C, LEE E L. Metal acceleration by chemical explosive [C]//Proceedings of the 4th Symposium on Detonation. Berlin: Springer, 1965: 3−13.
|
| [106] |
FICKETT W, WOOD W W, SALSBURG Z W. Investigations of the detonation properties of condensed explosives with equations of state based on intermolecular potentials. Ⅰ. RDX with fixed product composition [J]. The Journal of Chemical Physics, 1957, 27(6): 1324–1329. doi: 10.1063/1.1744001
|
| [107] |
MIAO F C, YAO J P, LI D D. Comparative study on the equation of state of detonation products [J]. AIP Advances, 2024, 14(4): 045305. doi: 10.1063/5.0204013
|
| [108] |
TANAKA K. Detonation properties of high explosives calculated by revised Kihara-Hikita equation of state [C]//Proceedings of the 8th Symposium International on Detonation. Albuquerque: Naval Surface Weapons Center, 1985: 548–558.
|
| [109] |
MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2007.
|
| [110] |
吴雄. VLW爆轰产物状态方程的发展及应用 [J]. 火炸药学报, 2021, 44(1): 1–7. doi: 10.14077/j.issn.1007-7812.202008015WU X. Development and application of VLW equation of state for detonation products [J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 1–7. doi: 10.14077/j.issn.1007-7812.202008015
|
| [111] |
BAKER E L, STUNZENAS G M, STIEL L I, et al. High explosive thermodynamic equations of state for combined fragmentation and blast loading [M]//SCHLEYE G, BREBBIA B A. Structures Under Shock and Impact Ⅻ. Southampton: WIT Press, 2012: 135–144.
|
| [112] |
MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [J]. MRS Online Proceedings Library, 1995, 418(1): 413–420. doi: 10.1557/PROC-418-413
|
| [113] |
田少康, 李席, 刘波, 等. 一种RDX基温压炸药的JWL-Miller状态方程研究 [J]. 含能材料, 2017, 25(3): 226–231. doi: 10.11943/j.issn.1006-9941.2017.03.009TIAN S K, LI X, LIU B, et al. Study on JWL-Miller equation of state of RDX-based thermobaric explosive [J]. Chinese Journal of Energetic Materials, 2017, 25(3): 226–231. doi: 10.11943/j.issn.1006-9941.2017.03.009
|
| [114] |
薛再清, 徐更光, 王廷增, 等. 用KHT状态方程计算炸药爆轰参数 [J]. 爆炸与冲击, 1998, 18(2): 172–176. doi: 10.11883/1001-1455(1998)02-0172-5XUE Z Q, XU G G, WANG T Z, et al. By use of KHT equation of state to calculate detonation parameters of explosives [J]. Explosion and Shock Waves, 1998, 18(2): 172–176. doi: 10.11883/1001-1455(1998)02-0172-5
|
| [115] |
韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系 [J]. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505HAN Y, LONG X P, GUO X L. Prediction of methane PVT relations at high temperatures by a simplified virial equation of state [J]. Acta Physica Sinica, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
|
| [116] |
韩勇, 郭向利, 龙新平. 高温高压CO2状态方程研究 [J]. 含能材料, 2016, 24(5): 462–468. doi: 10.11943/j.issn.1006-9941.2016.05.007HAN Y, GUO X L, LONG X P. High temperature and high pressure equation of state of carbon dioxide [J]. Chinese Journal of Energetic Materials, 2016, 24(5): 462–468. doi: 10.11943/j.issn.1006-9941.2016.05.007
|
| [117] |
PENG Y, LONG X P, JIANG X H, et al. A new high order virial equation of state and its application in the Chapman-Jouguet parameters calculation of explosives [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(1): e202100371. doi: 10.1002/prep.202100371
|
| [118] |
彭钺, 张蕾, 谢明伟, 等. 一种新爆轰产物状态方程及其在炸药爆轰性能预测上的应用 [J]. 含能材料, 2024, 32(9): 942–951. doi: 10.11943/CJEM2024021PENG Y, ZHANG L, XIE M W, et al. A novel equation of state for detonation products and its application in predicting the detonation performance of explosives [J]. Chinese Journal of Energetic Materials, 2024, 32(9): 942–951. doi: 10.11943/CJEM2024021
|
| [119] |
苗飞超, 郭子如, 李丹丹. 一种基于Virial理论的爆轰产物状态方程 [J]. 工程爆破, 2024, 30(1): 18–25, 43. doi: 10.19931/j.EB.20220413MIAO F C, GUO Z R, LI D D. A Virial-based equation of state for detonation products [J]. Engineering Blasting, 2024, 30(1): 18–25, 43. doi: 10.19931/j.EB.20220413
|
| [120] |
COWPERTHWAITE M, ZWISLER W H. The JCZ equations of state for detonation products and their incorporation in the TIGER code [C]//Proceedings of the Sixth Symposium (International) on Detonation. Coronado, CA: Naval Surface Weapons Center. 1976: 162–172.
|
| [121] |
CHIRAT R, PITTION-ROSSILLON G. A new equation of state for detonation products [J]. The Journal of Chemical Physics, 1981, 74(8): 4634–4642. doi: 10.1063/1.441653
|
| [122] |
赵波, 崔季平, 樊菁. 高温高压气体状态方程研究及钱学森方程改进 [J]. 力学学报, 2010, 42(2): 151–158. doi: 10.6052/0459-1879-2010-2-2009-029ZHAO B, CUI J P, FAN J. An improvement of Tsien’s equation of state in high-temperature and high-pressure gases [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 151–158. doi: 10.6052/0459-1879-2010-2-2009-029
|
| [123] |
张震宇, 田占东, 陈军, 等. 爆轰物理 [M]. 长沙: 国防科技大学出版社, 2016: 78−79.ZHANG Z Y, TIAN Z D, CHEN J, et al. Detonation physics [M]. Changsha: National University of Defense Technology Press, 2016: 78−79.
|
| [124] |
薛再清, 徐更光, 王廷增, 等. 用修正的KHT状态方程预报炸药爆轰性能 [J]. 北京理工大学学报, 1998, 18(3): 269–273.XUE Z Q, XU G G, WANG T Z, et al. Using revised KHT equation of state to predict explosives detonation property [J]. Journal of Beijing Institute of Technology, 1998, 18(3): 269–273.
|
| [125] |
张志江, 徐更光. 高能炸药水中爆炸能量输出特性数值分析 [J]. 含能材料, 2008, 16(2): 171–174. doi: 10.3969/j.issn.1006-9941.2008.02.014ZHANG Z J, XU G G. Numerical analysis on energy output of underwater explosion for high energetic explosives [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 171–174. doi: 10.3969/j.issn.1006-9941.2008.02.014
|
| [126] |
项大林, 荣吉利, 李健, 等. 基于KHT程序的RDX基含铝炸药JWL状态方程参数预测研究 [J]. 北京理工大学学报, 2013, 33(3): 239–243. doi: 10.3969/j.issn.1001-0645.2013.03.005XIANG D L, RONG J L, LI J, et al. JWL equation of state parameters prediction of RDX-based aluminized explosive based on KHT code [J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 239–243. doi: 10.3969/j.issn.1001-0645.2013.03.005
|
| [127] |
陈朗, 龙新平, 冯长根, 等. 含铝炸药爆轰 [M]. 北京: 国防工业出版社, 2004.CHEN L, LONG X P, FENG C G, et al. Aluminized explosive detonation [M]. Beijing: National Defense Industry Press, 2004.
|
| [128] |
赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282. doi: 10.11858/gywlxb.2009.04.007ZHAO Z, TAO G, DU C X. Application research on JWL equation of state of detonation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282. doi: 10.11858/gywlxb.2009.04.007
|
| [129] |
温丽晶, 段卓平, 张震宇, 等. 采用遗传算法确定炸药爆轰产物JWL状态方程参数 [J]. 爆炸与冲击, 2013, 33(Suppl 1): 130–134.WEN L J, DUAN Z P, ZHANG Z Y, et al. Determination of JWL-EOS parameters for explosive detonation products using genetic algorithm [J]. Explosion and Shock Waves, 2013, 33(Suppl 1): 130–134.
|
| [130] |
王成, 徐文龙, 郭宇飞. 基于基因遗传算法和γ律状态方程的JWL状态方程参数计算 [J]. 兵工学报, 2017, 38(Suppl 1): 167–173.WANG C, XU W L, GUO Y F. Calculation of JWL equation of state parameters based on genetic algorithm and γ equation of state [J]. Acta Armamentarii, 2017, 38(Suppl 1): 167–173.
|
| [131] |
崔浩, 郭锐, 宋浦, 等. 基于遗传算法辨识炸药JWL状态方程参数的研究 [J]. 振动与冲击, 2022, 41(9): 174–180. doi: 10.13465/j.cnki.Jvs.2022.09.023CUI H, GUO R, SONG P, et al. Identification of parameters of explosive JWL state equation based on genetic algorithm [J]. Journal of Vibration and Shock, 2022, 41(9): 174–180. doi: 10.13465/j.cnki.Jvs.2022.09.023
|
| [132] |
何伟平, 黄菊, 陈厚和, 等. 基于BKW状态方程的爆轰产物及参数的改进算法 [J]. 火炸药学报, 2017, 40(3): 53–59. doi: 10.14077/j.issn.1007-7812.2017.03.009HE W P, HUANG J, CHEN H H, et al. Improved algorithm of detonation products and parameters based on the BKW equation of state [J]. Chinese Journal of Explosives & Propellants, 2017, 40(3): 53–59. doi: 10.14077/j.issn.1007-7812.2017.03.009
|
| [133] |
崔浩, 郭锐, 顾晓辉, 等. BP神经网络和圆筒能量模型标定炸药的JWL参数 [J]. 火炸药学报, 2021, 44(5): 665–673. doi: 10.14077/j.issn.1007-7812.202104016CUI H, GUO R, GU X H, et al. Calibration of JWL parameters of explosive by BP neural network and cylinder energy model [J]. Chinese Journal of Explosives & Propellants, 2021, 44(5): 665–673. doi: 10.14077/j.issn.1007-7812.202104016
|
| [134] |
KHASAINOV B A, BORISOV A A, ERMOLAEV B, et al. Two-phase viscoplastic model of shock initiation of detonation in high density pressed explosives [C]//Proceeding of the 7th Symposium (International) on Detonation. Annapolis: Office of Naval Research, 1981.
|
| [135] |
KANG J, BUTLER P B, BAER M R. A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials [J]. Combustion and Flame, 1992, 89(2): 117–139. doi: 10.1016/0010-2180(92)90023-I
|
| [136] |
MASSONI J, SAUREL R, BAUDIN G, et al. A mechanistic model for shock initiation of solid explosives [J]. Physics of Fluids, 1999, 11(3): 710–736. doi: 10.1063/1.869941
|