双重异性障碍物下掺氢甲烷的燃爆压升效应

徐阳 李冕 李元兵 龙凤英

徐阳, 李冕, 李元兵, 龙凤英. 双重异性障碍物下掺氢甲烷的燃爆压升效应[J]. 高压物理学报. doi: 10.11858/gywlxb.20240944
引用本文: 徐阳, 李冕, 李元兵, 龙凤英. 双重异性障碍物下掺氢甲烷的燃爆压升效应[J]. 高压物理学报. doi: 10.11858/gywlxb.20240944
XU Yang, LI Mian, LI Yuanbing, LONG Fengying. Pressure Rise Effect of Hydrogen-Methane Mixture Combustion under Dual Heterogeneous Obstacles[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240944
Citation: XU Yang, LI Mian, LI Yuanbing, LONG Fengying. Pressure Rise Effect of Hydrogen-Methane Mixture Combustion under Dual Heterogeneous Obstacles[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240944

双重异性障碍物下掺氢甲烷的燃爆压升效应

doi: 10.11858/gywlxb.20240944
基金项目: 中国高校产学研创新基金-新一代信息技术创新项目(2021ITA08007);重庆市职业教育教学改革研究项目(Z2241166)
详细信息
    作者简介:

    徐 阳(1988-),男,硕士,副教授,主要从事风险评估、矿山安全等灾害防治技术研究. E-mail:1027877851@qq.com

  • 中图分类号: O382.1; O521.9

Pressure Rise Effect of Hydrogen-Methane Mixture Combustion under Dual Heterogeneous Obstacles

  • 摘要: 气体燃爆灾害特性是国内外研究的热点和重点,研究复杂约束条件下的燃爆特性极具意义。针对刚性障碍物和柔性障碍物,通过实验探究了长直形管道中双重异性障碍物下掺氢甲烷气体的燃爆过程。结果表明:较无障碍物环境,双重障碍物对火焰速度、爆炸压力以及爆炸强度指数的影响表现为随柔性障碍物阻塞率的提高和掺氢的置入而提升,并且爆炸压力和爆炸强度指数的增幅高于火焰速度的增幅。在掺氢和双重障碍物的共同作用下,火焰接触速度增幅可达176.51%,最大速度增幅达316.40%。双重障碍物导致上游区域出现压力先升后降现象,下游区域的压力振荡明显;掺氢后,与无障碍环境相比,管内最大爆炸压力增幅可达1280.9%,最大爆炸强度指数提升至167.65倍。在约束设施布局工程项目中,应首选较小阻塞率的柔性障碍物,以有效减轻爆炸危害。

     

  • 图  实验平台示意图

    Figure  1.  Schematic diagram of experimental platform

    图  实验工况示意图

    Figure  2.  Schematic diagrams of experimental conditions

    图  无障碍物条件(工况1)下甲烷燃爆火焰结构变化

    Figure  3.  Structural changes of methane explosion flame under obstacle-free condition (Case 1)

    图  刚柔障碍物工况下甲烷燃爆火焰结构变化

    Figure  4.  Structural changes of methane explosion flame under rigid-flexible obstacle conditions

    图  刚柔障碍物工况下掺氢甲烷燃爆火焰结构变化

    Figure  5.  Structural changes of hydrogen-methane mixture explosion flame under rigid-flexible obstacle conditions

    图  各工况下火焰锋面传播速度和火焰前锋位置随时间的变化

    Figure  6.  Changes in flame front propagation speed and flame front position with time under all conditions

    图  不同工况下接触速度(vc)与最大速度(vmax)的关系

    Figure  7.  Relationship between contact speed (vc) and maximum speed (vmax) under different conditions

    图  不同工况下爆炸压力随时间的变化

    Figure  8.  Deflagration pressure versus time under different experimental conditions

    图  上游和下游区域的最大爆炸压力、压升率及爆炸强度指数的对比

    Figure  9.  Comparison of the maximum explosion pressure, pressure rise rate, and explosion intensity index

    图  10  管内压升效应的演化机制

    Figure  10.  Evolution mechanism of pressure rise effect inside the pipe

  • [1] 中国城市燃气协会安全管理工作委员会. 全国燃气事故分析报告(2024年上半年报告) [EB/OL]. (2024-10-09)[2024-11-02]. https://m.gmw.cn/2024-10/22/content_1303877758.htm.

    The Safety Management Working Committee of China Urban Gas Association. National gas accident analysis report (first half of 2024) [EB/OL]. (2024-10-09)[2024-11-02]. https://m.gmw.cn/2024-10/22/content_1303877758.htm.
    [2] ASTBURY G R. A review of the properties and hazards of some alternative fuels [J]. Process Safety and Environmental Protection, 2008, 86(6): 397–414. doi: 10.1016/j.psep.2008.05.001
    [3] CAI P, LI M Z, LIU Z Y, et al. Experimental and numerical study of natural gas leakage and explosion characteristics [J]. ACS Omega, 2022, 7(29): 25278–25290. doi: 10.1021/acsomega.2c02200
    [4] KANG Y, MA S Y, SONG B X, et al. Simulation of hydrogen leakage diffusion behavior in confined space [J]. International Journal of Hydrogen Energy, 2024, 53: 75–85. doi: 10.1016/j.ijhydene.2023.12.026
    [5] YANG N N, DENG J, WANG C P, et al. High pressure hydrogen leakage diffusion: research progress [J]. International Journal of Hydrogen Energy, 2024, 50: 1029–1046. doi: 10.1016/j.ijhydene.2023.08.221
    [6] KINDRACKI J, KOBIERA A, RARATA G, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 551–561. doi: 10.1016/j.jlp.2007.05.010
    [7] QIAO Z L, MA H, LI C. Influence of change in obstacle blocking rate gradient on LPG explosion behavior [J]. Arabian Journal of Chemistry, 2023, 16(2): 104496. doi: 10.1016/j.arabjc.2022.104496
    [8] LI D, ZHANG Q, MA Q J, et al. Influence of built-in obstacles on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 449–456. doi: 10.1016/j.jlp.2016.07.007
    [9] XIAO G Q, WANG S, MI H F, et al. Analysis of obstacle shape on gas explosion characteristics [J]. Process Safety and Environmental Protection, 2022, 161: 78–87. doi: 10.1016/j.psep.2022.03.019
    [10] DUAN Y L, LEI S L, LI Z H, et al. Study on flexible/rigid protection mechanism of hydrogen/methane premixed gas explosion in urban underground space [J]. Process Safety and Environmental Protection, 2024, 182: 808–822. doi: 10.1016/j.psep.2023.12.028
    [11] LI Q, CICCARELLI G, SUN X X, et al. Flame propagation across a flexible obstacle in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2018, 43(36): 17480–17491. doi: 10.1016/j.ijhydene.2018.07.077
    [12] 徐阿猛, 陈学习, 贾进章. 障碍物对瓦斯爆炸冲击波传播的影响研究 [J]. 中国安全科学学报, 2019, 29(9): 96–101. doi: 10.16265/j.cnki.issn1003-3033.2019.09.015

    XU A M, CHEN X X, JIA J Z. Effects of obstacles on gas explosion shock wave propagation [J]. China Safety Science Journal, 2019, 29(9): 96–101. doi: 10.16265/j.cnki.issn1003-3033.2019.09.015
    [13] XIU Z, LIU Z Y, LI P L, et al. Effects of combined obstacles on deflagration characteristics of hydrogen-air premixed gas [J]. International Journal of Hydrogen Energy, 2023, 48(79): 31008–31021. doi: 10.1016/j.ijhydene.2023.04.251
    [14] WANG S, XIAO G Q, FENG Y, et al. Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio [J]. Energy, 2023, 267: 126620. doi: 10.1016/j.energy.2023.126620
    [15] DUAN Y L, LONG F Y, HUANG J, et al. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27237–27249. doi: 10.1016/j.ijhydene.2022.06.065
    [16] 雷桐桐. 障碍物影响气体爆炸特性的研究进展 [C]//2024年度灭火与应急救援技术学术研讨会. 珠海: 中国人民警察大学, 中国消防协会, 2024: 30–33.
    [17] 王哲石. 密闭管道内柔性障碍物对可燃气气体爆炸特性的影响机制研究 [D]. 青岛: 青岛科技大学, 2023.

    WANG Z S. Effect mechanism of flexible obstacles on gas explosion characteristics in a confined [D]. Qingdao: Qingdao University of Science and Technology, 2023.
    [18] 焦一飞, 熊晓曼, 任昊, 等. 多种材质障碍物对甲烷-氢气预混燃气的促爆影响 [J]. 高压物理学报, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682

    JIAO Y F, XIONG X M, REN H, et al. Effect of various material obstacles on the promoting explosion of methane-hydrogen premixed gas [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682
    [19] LI Q, SUN X X, WANG X, et al. Experimental study of flame propagation across flexible obstacles in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2019, 44(7): 3944–3952. doi: 10.1016/j.ijhydene.2018.12.085
    [20] YU S W, DUAN Y L, LONG F Y, et al. The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 4520–4536. doi: 10.1080/15567036.2023.2205357
    [21] 张静雯, 彭澳, 陈先锋, 等. 扰动作用下爆轰形成机理 [J]. 高压物理学报, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600

    ZHANG J W, PENG A, CHEN X F, et al. Mechanisms of detonation initiation under the effect of perturbation [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600
    [22] 张立业, 邓海涛, 孙桂军, 等. 天然气随动掺氢技术研究进展 [J]. 力学与实践, 2022, 44(4): 755–766. doi: 10.6052/1000-0879-22-056

    ZHANG L Y, DENG H T, SUN G J, et al. Research progress of natural gas follow-up hydrogen mixing technology [J]. Mechanics in Engineering, 2022, 44(4): 755–766. doi: 10.6052/1000-0879-22-056
    [23] ARIARATNAM S T, LUEKE J S, MICHAEL J K. Current trends in pipe bursting for renewal of underground infrastructure systems in North America [J]. Tunnelling and Underground Space Technology, 2014, 39: 41–49. doi: 10.1016/j.tust.2012.04.003
    [24] TONG Z X, FANG J. Comprehensive evaluation of PPP project construction for urban underground pipe gallery [C]//Proceedings of International Conference on Construction and Real Estate Management 2019. Reston, 2019: 425−433.
    [25] WANG Z H, CHEN X D. Risk management of urban pipe gallery based on system dynamics [J]. IOP Conference Series: Earth and Environmental Science, 2021, 693(1): 012003. doi: 10.1088/1755-1315/693/1/012003
    [26] CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 69–77. doi: 10.1016/j.jlp.2016.11.017
    [27] 曹玉忠, 卢泽生, 管怀安, 等. 抗爆容器内爆炸流场数值模拟 [J]. 高压物理学报, 2001, 15(2): 127–133. doi: 10.11858/gywlxb.2001.02.009

    CAO Y Z, LU Z S, GUAN H A, et al. Numerical simulations of blast flow-fields in closed blast-resistant containers [J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 127–133. doi: 10.11858/gywlxb.2001.02.009
    [28] WANG Z S, ZHANG Z L, YU J, et al. The effect of flexible obstacles with different thicknesses on explosion propagation of premixed methane-air in a confined duct [J]. Heliyon, 2023, 9(8): e18803. doi: 10.1016/J.HELIYON.2023.E18803
  • 加载中
图(10)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  12
  • PDF下载量:  1
出版历程
  • 收稿日期:  2024-11-21
  • 修回日期:  2025-01-09
  • 网络出版日期:  2025-04-09

目录

    /

    返回文章
    返回