纤维增强复合材料层合板抗侵彻的多尺度模拟方法

李涵 陈长海 鲁程

李涵, 陈长海, 鲁程. 纤维增强复合材料层合板抗侵彻的多尺度模拟方法[J]. 高压物理学报. doi: 10.11858/gywlxb.20240940
引用本文: 李涵, 陈长海, 鲁程. 纤维增强复合材料层合板抗侵彻的多尺度模拟方法[J]. 高压物理学报. doi: 10.11858/gywlxb.20240940
LI Han, CHEN Changhai, LU Cheng. Multiscale Simulation Method for Anti-Penetration of Fiber-Reinforced Composite Laminates[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240940
Citation: LI Han, CHEN Changhai, LU Cheng. Multiscale Simulation Method for Anti-Penetration of Fiber-Reinforced Composite Laminates[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240940

纤维增强复合材料层合板抗侵彻的多尺度模拟方法

doi: 10.11858/gywlxb.20240940
基金项目: 国家自然科学基金(52071149);湖北省科技服务类平台专项(2023EGA095);中央高校基本科研业务费专项资金(2019kfyXJJS007)
详细信息
    作者简介:

    李 涵(2000-),男,硕士研究生,主要从事结构冲击动力学研究. E-mail:m202272210@hust.edu.cn

    通讯作者:

    陈长海(1985-),男,博士,副研究员,博士生导师,主要从事复合材料力学及其应用研究. E-mail:chenchanghai@hust.edu.cn

  • 中图分类号: O347.3; O521.2

Multiscale Simulation Method for Anti-Penetration of Fiber-Reinforced Composite Laminates

  • 摘要: 针对纤维增强复合材料层合板结构设计和抗侵彻数值仿真需要大量材料参数和动态试验数据的问题,以碳纤维增强复合材料层合板为研究对象,采用多尺度模拟方法,实现了纤维丝-纤维束-层合板的微观-介观-宏观力学性能和抗侵彻能力的全流程数值仿真预测。首先,建立微观代表性体积单元(representative volume elements,RVE),基于最大应力准则,预测出纤维束的力学性能;然后,根据编织结构的空间特征建立介观RVE模型,采用Hashin和Hou的失效准则,预测出宏观等效力学性能;最后,根据已发表的试验数据,建立了宏观弹道侵彻数值模型,提出了一种考虑材料应变率效应的改进Hashin失效准则,进而研究了弹道侵彻作用下纤维增强复合材料层合板的剩余速度和损伤特征。结果表明:试验与仿真得到的剩余速度的相对误差在5%以内,宏观数值模型准确捕捉到了纤维断裂、层间分层等损伤模式,验证了多尺度模拟方法的合理性和准确性;拟合得到了弹道极限速度随板厚变化的关系式,两者呈线性关系,且相关系数达0.97以上。研究结果有助于实现纤维增强复合材料层合板抗侵彻的低成本、短周期结构设计,对纤维增强复合材料层合板的正向性能预测和逆向结构设计均具有重要的科学和工程应用价值。

     

  • 图  微观尺度RVE模型

    Figure  1.  Microscopic scale RVE model

    图  介观尺度RVE建模

    Figure  2.  Mesoscopic scale RVE modeling

    图  弹道侵彻有限元模型

    Figure  3.  Finite element model of ballistic penetration

    图  弹道侵彻数值分析流程

    Figure  4.  Numerical analysis flow of ballistic penetration

    图  靶板损伤形貌的试验[15]与仿真结果对比

    Figure  5.  Comparison between test[15] and simulated damaged appearance of target plate

    图  应变率效应对剩余速度的影响

    Figure  6.  Effect of strain rate on residual velocity

    图  靶板弹道极限随板厚变化曲线

    Figure  7.  Ballistic limit velocity curve with plate thickness

    表  1  T300碳纤维的力学参数[1516]

    Table  1.   Mechanical parameters of T300 carbon fiber[1516]

    Ef1/GPaEf2/GPaEf3/GPaGf12/GPaμf12μf13μf23Xft/MPaXfc/MPa
    22113.8113.8190.270.270.3035302470
    下载: 导出CSV

    表  2  环氧树脂基体的力学参数[1516]

    Table  2.   Mechanical parameters of epoxy resin[1516]

    Em/GPaμmSmt/MPaSmc/MPaSms/MPa
    3.550.338024160
    下载: 导出CSV

    表  3  介观RVE模型参数

    Table  3.   Parameters of mesoscopic RVE model

    L/mmW/mmht/mma0/mma1/mm
    4.001.750.100.251.50
    下载: 导出CSV

    表  4  纤维束刚度参数计算结果

    Table  4.   Results of fiber bundle stiffness parameters

    Method Elastic modulus/GPa Shear modulus/GPa Poisson’s ratio
    E1 E2 E3 G12 G13 G23 $ {\mu }_{12} $ $ {\mu }_{13} $ $ {\mu }_{23} $
    Simulation 177.69 10.14 10.14 5.36 5.36 3.51 0.280 0.280 0.350
    Equation 177.51 10.58 10.58 5.60 5.60 3.77 0.282 0.282 0.369
    Error/% 0.10 −4.17 −4.17 −4.33 −4.33 −6.83 −0.71 −0.71 −5.06
    下载: 导出CSV

    表  5  纤维束强度参数计算结果

    Table  5.   Results of fiber bundle strength parameters

    Method Tension strength/MPa Compressive strength/MPa Shear strength/MPa
    Xt Yt Zt Xc Yc Zc S12 S13 S23
    Simulation 2865.11 72.72 72.72 1938.67 208.44 208.44 64.50 64.50 52.26
    Equation 2835.34 74.39 74.39 1983.94 224.09 224.09
    Error/% 1.05 −2.24 −2.24 −2.28 −6.99 −6.99
    下载: 导出CSV

    表  6  宏观等效力学参数对比

    Table  6.   Comparison of macroscopic equivalent mechanical parameters

     Method E1/GPa E2/GPa E3/GPa G12/GPa G13/GPa G23/GPa Xt/MPa
    Simulation 56.50 56.50 7.90 3.59 2.51 2.51 740.37
    Test[15] 57.94 57.94 3.59 726
    Error/% −2.49 −2.49 0 1.98
     Method Yt/MPa Xc/MPa Yc/MPa S12/MPa S13 /MPa S23/MPa
    Simulation 740.37 630.34 630.34 64.95 62.88 62.88
    Test[15] 726 113.29 65.82 65.82
    Error/% 1.98 −42.67 −4.47 −4.47
    下载: 导出CSV

    表  7  层间界面的力学性能[21]

    Table  7.   Mechanical properties of cohesive interfaces[21]

    $ {t}_{\mathrm{n}}^{0} $/MPa $ {t}_{\mathrm{s}}^{0} $/MPa $ {t}_{\mathrm{t}}^{0} $/MPa $ {G}_{\mathrm{c}}^{{Ⅰ}} $/(kJ·m−2) $ {G}_{\mathrm{c}}^{{Ⅱ}} $/(kJ·m−2) $ {G}_{\mathrm{c}}^{{Ⅲ}} $/(kJ·m−2)
    50 90 90 0.52 0.92 0.92
    下载: 导出CSV

    表  8  仿真与试验得到的剩余速度和单位面密度吸能的对比

    Table  8.   Comparison of residual velocity and energy absorption per unit surface density between simulation and test

    vi/(m·s−1) vr $ \eta $
    Test[15]/(m·s−1) Sim./(m·s−1) Error/% Test[15]/(J·kg−1·m2) Sim./(J·kg−1·m2) Error/%
    405.3 306.6 317.7 3.62 18.49 16.69 −9.85
    503.8 394.6 413.9 4.41 25.42 21.71 −14.67
    608.6 494.8 509.4 2.95 33.02 29.19 −11.68
    803.9 672.5 687.9 2.29 51.02 45.54 −10.80
    下载: 导出CSV

    表  9  不同板厚下的拟合参数

    Table  9.   Fitting parameters under different plate thicknesses

    h/mmap
    4.40.8972.089
    5.70.8842.051
    6.60.8562.104
    7.70.8372.030
    8.80.8002.164
    9.90.8052.032
    下载: 导出CSV
  • [1] 罗锡林, 魏建辉, 李飘, 等. 碳纤维编织复合材料层合板抗侵彻性能研究 [J]. 材料开发与应用, 2023, 38(4): 61–68. doi: 10.19515/j.cnki.1003-1545.2023.04.004

    LUO X L, WEI J H, LI P, et al. Study on penetration resistance of carbon fiber braided composite laminates [J]. Development and Application of Materials, 2023, 38(4): 61–68. doi: 10.19515/j.cnki.1003-1545.2023.04.004
    [2] DU C L, XIA R Z, LIU P, et al. On the impact damage characteristics of spread-tow woven composites: from high velocity to hyper velocity [J]. Engineering Failure Analysis, 2023, 146: 107109. doi: 10.1016/j.engfailanal.2023.107109
    [3] PENG Y, WANG X, CHEN X Z, et al. Numerical simulation of the effect of projectile shape and size on the high-velocity impact of carbon fiber reinforced composite laminates [J]. Journal of Materials Research and Technology, 2024, 30: 5109–5120. doi: 10.1016/j.jmrt.2024.04.218
    [4] ALONSO L, MARTíNEZ-HERGUETA F, GARCIA-GONZALEZ D, et al. A finite element approach to model high-velocity impact on thin woven GFRP plates [J]. International Journal of Impact Engineering, 2020, 142: 103593. doi: 10.1016/j.ijimpeng.2020.103593
    [5] MEYER C S, O'BRIEN D J, HAQUE B Z, et al. Mesoscale modeling of ballistic impact experiments on a single layer of plain weave composite [J]. Composites Part B: Engineering, 2022, 235: 109753. doi: 10.1016/j.compositesb.2022.109753
    [6] 牟浩蕾, 李仪, 宋东方, 等. 芳纶平纹编织复合材料平板弹道冲击特性及损伤分析 [J]. 复合材料科学与工程, 2024(1): 89–97, 104. doi: 10.19936/j.cnki.2096-8000.20240128.012

    MOU H L, LI Y, SONG D F, et al. Ballistic impact characteristics and damage analysis of aramid plain woven composite plates [J]. Composites Science and Engineering, 2024(1): 89–97, 104. doi: 10.19936/j.cnki.2096-8000.20240128.012
    [7] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展 [J]. 固体力学学报, 2018, 39(1): 1–68. doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.030

    CHEN Y L, MA Y, PAN F, et al. Research progress in multi-scale mechanics of composite materials [J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1–68. doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.030
    [8] 王新峰. 机织复合材料多尺度渐进损伤研究 [D]. 南京: 南京航空航天大学, 2007.

    WANG X F. Multi-scale analyses of damage evolution in woven composite materials [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
    [9] MADKE R R, CHOWDHURY R. A multiscale continuum model for inelastic behavior of woven composite [J]. Composite Structures, 2019, 226: 111267. doi: 10.1016/j.compstruct.2019.111267
    [10] ZHU Y X, HE C W, ZHAO T, et al. Towards accurate prediction of the dynamic behavior and failure mechanisms of three-dimensional braided composites: a multiscale analysis scheme [J]. Thin-Walled Structures, 2024, 203: 112188. doi: 10.1016/J.TWS.2024.112188
    [11] 张洁皓. 开孔平纹机织复合材料低速冲击性能研究 [D]. 郑州: 郑州大学, 2020.

    ZHANG J H. Study on low-velocity impact performance of plain weave composites with holes [D]. Zhengzhou: Zhengzhou University, 2020.
    [12] 王涛, 侯玉亮, 铁瑛, 等. 基于ECPL模型的平纹机织复合材料低速冲击多尺度模拟 [J]. 振动与冲击, 2020, 39(20): 295–304. doi: 10.13465/j.cnki.jvs.2020.20.038

    WANG T, HOU Y L, TIE Y, et al. Multi-scale simulation of low-velocity impact on plain woven composites based on an ECPL model [J]. Journal of Vibration and Shock, 2020, 39(20): 295–304. doi: 10.13465/j.cnki.jvs.2020.20.038
    [13] 赵巧莉, 侯玉亮, 刘泽仪, 等. 碳纤维平纹机织复合材料低速冲击及冲击后压缩性能多尺度分析 [J]. 中国机械工程, 2021, 32(14): 1732–1742. doi: 10.3969/j.issn.1004-132X.2021.14.012

    ZHAO Q L, HOU Y L, LIU Z Y, et al. Multi-scale analysis of LVI and CAI behaviors of plain woven carbon-fiber-reinforced composites [J]. China Mechanical Engineering, 2021, 32(14): 1732–1742. doi: 10.3969/j.issn.1004-132X.2021.14.012
    [14] SMOJVER I, BREZETIĆ D, IVANČEVIĆ D. Explicit multi-scale modelling of intrinsic self-healing after low-velocity impact in GFRP composites [J]. Composite Structures, 2022, 302: 116213. doi: 10.1016/j.compstruct.2022.116213
    [15] BAO J W, WANG Y W, AN R, et al. Investigation of the mechanical and ballistic properties of hybrid carbon/ aramid woven laminates [J]. Defence Technology, 2022, 18(10): 1822–1833. doi: 10.1016/j.dt.2021.09.009
    [16] ZHENG T, GUO L C, HUANG J Z, et al. A novel mesoscopic progressive damage model for 3D angle-interlock woven composites [J]. Composites Science and Technology, 2020, 185: 107894. doi: 10.1016/j.compscitech.2019.107894
    [17] 陈占光. 基于多尺度方法的含孔机织复合材料强度分析研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

    CHEN Z G. Strength analysis of woven composites with holes based on multi-scale method [D]. Harbin: Harbin Institute of Technology, 2021.
    [18] GAROZ D, GILABERT F A, SEVENOIS R D B, et al. Consistent application of periodic boundary conditions in implicit and explicit finite element simulations of damage in composites [J]. Composites Part B: Engineering, 2019, 168: 254–266. doi: 10.1016/j.compositesb.2018.12.023
    [19] CHAMIS C C. Mechanics of composite materials: past, present, and future [J]. Journal of Composites Technology and Research, 1989, 11(1): 3–14. doi: 10.1520/CTR10143J
    [20] 葛辛辛. 斜纹编织碳纤维层合厚板低速冲击损伤及剩余压缩强度研究 [D]. 武汉: 华中科技大学, 2022.

    GE X X. Research on low-velocity impact damage and residual compressive strength of twill woven carbon fiber reinforced thick composite laminates [D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [21] TIE Y, HOU Y L, LI C, et al. Optimization for maximizing the impact-resistance of patch repaired CFRP laminates using a surrogate-based model [J]. International Journal of Mechanical Sciences, 2020, 172: 105407. doi: 10.1016/j.ijmecsci.2019.105407
    [22] 陈战辉. 碳纤维平纹织物层合板高速冲击损伤研究 [D]. 西安: 西北工业大学, 2019.

    CHEN Z H. Investigation on damage in carbon woven composite laminates caused by high velocity impact [D]. Xi’an: Northwestern Polytechnical University, 2019.
    [23] 方盈盈. 高应变率下碳纤维复合材料动态力学性能研究 [D]. 大连: 大连理工大学, 2018.

    FANG Y Y. Study on dynamic mechanical properties of carbon fiber reinforced composite materials under high strain rate [D]. Dalian: Dalian University of Technology, 2018.
    [24] LI J T, LIU M B. An analytical model to predict the impact of a bullet on ultra-high molecular weight polyethylene composite laminates [J]. Composite Structures, 2022, 282: 115064. doi: 10.1016/j.compstruct.2021.115064
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  13
  • PDF下载量:  1
出版历程
  • 收稿日期:  2024-11-14
  • 修回日期:  2025-01-15
  • 网络出版日期:  2025-04-09

目录

    /

    返回文章
    返回