含泡沫铝填充多胞圆管吸能立柱的防冲特性

田立勇 董成 于宁 王泽 于晓涵

田立勇, 董成, 于宁, 王泽, 于晓涵. 含泡沫铝填充多胞圆管吸能立柱的防冲特性[J]. 高压物理学报, 2025, 39(7): 074205. doi: 10.11858/gywlxb.20240938
引用本文: 田立勇, 董成, 于宁, 王泽, 于晓涵. 含泡沫铝填充多胞圆管吸能立柱的防冲特性[J]. 高压物理学报, 2025, 39(7): 074205. doi: 10.11858/gywlxb.20240938
TIAN Liyong, DONG Cheng, YU Ning, WANG Ze, YU Xiaohan. Anti-Scour Characteristics of Multi-Cell Tube Energy-Absorbing Column Filled with Aluminum Foam[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074205. doi: 10.11858/gywlxb.20240938
Citation: TIAN Liyong, DONG Cheng, YU Ning, WANG Ze, YU Xiaohan. Anti-Scour Characteristics of Multi-Cell Tube Energy-Absorbing Column Filled with Aluminum Foam[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074205. doi: 10.11858/gywlxb.20240938

含泡沫铝填充多胞圆管吸能立柱的防冲特性

doi: 10.11858/gywlxb.20240938
基金项目: 国家自然科学基金(52174143)
详细信息
    作者简介:

    田立勇(1979-),男,博士,副教授,主要从事机电一体化研究. E-mail:tianliyong@lntu.edu.cn

    通讯作者:

    于 宁(1979-),女,博士,讲师,主要从事矿业工程、故障诊断、安全科学与灾害防治研究. E-mail:yning369@163.com

  • 中图分类号: O347; O521.9; TD324

Anti-Scour Characteristics of Multi-Cell Tube Energy-Absorbing Column Filled with Aluminum Foam

  • 摘要: 了解液压支架的防冲性能是防治巷道冲击地压的关键。基于在吸能构件研究方面的基础,针对现有液压支架缓冲吸能性能不足的问题,提出了一种泡沫铝填充新型吸能构件,并开展了防冲立柱的吸能特性研究。通过数值模拟方法在不同壁厚多胞圆管中选择吸能性能最优的管件,进行了7种不同方式的泡沫铝填充,并通过准静态压溃实验验证数值模拟的准确性,分析得出吸能性能较优的吸能构件填充类型(MRYF类型)。通过落锤冲击液压系统耦合数值模拟方法,对不同冲击能量作用下的常规立柱(无安全阀作用)和构件吸能立柱(MRYF类型吸能构件单独作用)的冲击特性进行分析,进而比较强冲击能量作用下液压吸能立柱(安全阀单独作用)和液压-构件吸能立柱(MRYF类型吸能构件与安全阀共同作用)的吸能特性。结果表明:新型吸能构件的平均承载力增加18.11%,吸能量提升7.64%,载荷均方差减小10.75%,变形模式更规律,综合吸能性能更优异;不同冲击能量下,吸能立柱内的液体压力峰值均明显减小;强冲击能量作用下,液压-构件吸能立柱内的液体压力峰值相对于液压吸能立柱降低6.28 MPa,立柱内液体压力更加平稳;新型吸能构件的加入可实现让缩吸能,有效降低冲击载荷下立柱内的最大液体压力,并减少对安全阀施加的总冲击能量,提高安全阀对不同冲击载荷的适应性以及冲击载荷作用下支架立柱的抗冲击性能。

     

  • 图  液压支架及吸能装置基本结构示意图

    Figure  1.  Schematic diagram of hydraulic support and energy absorption device basic structure

    图  多胞圆管吸能构件

    Figure  2.  Multi-cell circular tube energy-absorbing components

    图  吸能构件有限元模型

    Figure  3.  Finite element model of an energy-absorbing component

    图  泡沫铝轴向压缩应力-应变曲线

    Figure  4.  Axial compression stress-strain curve of foam aluminum

    图  网格收敛性验证

    Figure  5.  Grid convergence verification

    图  不同填充方式构件的承载力和吸能量曲线

    Figure  6.  Load bearing capacity and energy-absorption curves of members with different filling methods

    图  不同填充方式构件的吸能性能参数

    Figure  7.  Comparison of energy absorption performance parameters of components with different filling methods

    图  不同构件承载力和吸能量曲线

    Figure  8.  Load baering capacity-displacement and energy absoption-displacement curves of different components

    图  不同吸能构件的轴向压溃变形

    Figure  9.  Axial collapse deformation of different energy-absorbing components

    图  10  吸能构件的能量关系曲线

    Figure  10.  Energy relationships of energy-absorbing components

    图  11  不同加载速度下吸能构件的承载力-位移曲线

    Figure  11.  Load-displacement curves of energy-absorbing components at different simulated loading velocities

    图  12  YAW-5000J微机控制电液伺服压剪试验机

    Figure  12.  YAW-5000J microcomputer-controlled hydraulic servo press-shear testing machine

    图  13  吸能构件试件

    Figure  13.  Energy-absorbing component sample

    图  14  变形对比

    Figure  14.  Comparison of deformation

    图  15  仿真与准静态压缩实验得到的承载力-位移曲线

    Figure  15.  Comparison of load-displacement curves obtained from numerical simulation and quasi-static compression test

    图  16  常规立柱冲击计算模型

    Figure  16.  Calculation model of conventional column impact

    图  17  立柱冲击模型

    Figure  17.  Column impact model

    图  18  液压系统模型

    Figure  18.  Hydraulic system model

    图  19  理论与数值模拟的压力-时间曲线

    Figure  19.  Theoretical and simulated pressure-time curves

    图  20  液体压力曲线

    Figure  20.  Liquid pressure curves

    图  21  含安全阀立柱液体压力曲线

    Figure  21.  Liquid pressure curves of energy-absorbing columns with safety valve column

    表  1  构件结构尺寸

    Table  1.   Structural dimensions of the component

    Serial No. D/mm h/mm d/mm θ/mm Type
    MRN1 200 350 120 2.0 Poly cellular tubular
    MRN2 200 350 120 2.2 Poly cellular tubular
    MRN3 200 350 120 2.4 Poly cellular tubular
    MRN4 200 350 120 2.6 Poly cellular tubular
    MRN5 200 350 120 2.8 Poly cellular tubular
    MRN6 200 350 120 3.0 Poly cellular tubular
    MRYA 200 350 120 2.6 A
    MRYB 200 350 120 2.6 B
    MRYC 200 350 120 2.6 C
    MRYD 200 350 120 2.6 D
    MRYE 200 350 120 2.6 E
    MRYF 200 350 120 2.6 F
    MRYG 200 350 120 2.6 G
    下载: 导出CSV

    表  2  材料物理参数和本构模型参数

    Table  2.   Physical parameters and constitutive model parameters of materials

    Materialρ/(kg·m−3)E/GPaμA/MPaB/MPaCnm
    45 steel7 8002100.35073200.0640.281.06
    下载: 导出CSV

    表  3  不同壁厚构件吸能性能参数

    Table  3.   Energy absorption performance parameters of components with different wall thicknesses

    Serial No. FPIC/kN FAC/kN EA/kJ $\overline\sigma $/kN δ/mm
    MRN1 1 835 1 044 287.40 164.36 273.97
    MRN2 2 024 1 225 332.47 191.55 270.35
    MRN3 2 221 1 387 380.76 197.97 275.11
    MRN4 2 427 1 623 447.01 216.67 274.91
    MRN5 2 656 1 823 503.79 218.96 275.73
    MRN6 2 878 2 005 560.26 246.91 278.46
    下载: 导出CSV
  • [1] 潘一山, 王凯兴, 肖永惠. 基于摆型波理论的防冲支护设计 [J]. 岩石力学与工程学报, 2013, 32(8): 1537–1543.

    PAN Y S, WANG K X, XIAO Y H. Design of anti-scour support based on theory of pendulum-type wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1537–1543.
    [2] 肖永惠, 潘一山, 陈建强, 等. 巷道防冲支架吸能构件屈曲吸能可靠性研究 [J]. 采矿与安全工程学报, 2022, 39(2): 317–327. doi: 10.13545/j.cnki.jmse.2021.0495

    XIAO Y H, PAN Y S, CHEN J Q, et al. Buckling energy absorption reliability of energy absorption component of roadway rockburst preventing support [J]. Journal of Mining & Safety Engineering, 2022, 39(2): 317–327. doi: 10.13545/j.cnki.jmse.2021.0495
    [3] 王春华, 安达, 韩冲, 等. 冲击地压新型加肋板圆管式吸能防冲构件的仿真与试验 [J]. 振动与冲击, 2019, 38(11): 203–210, 241. doi: 10.13465/j.cnki.jvs.2019.11.030

    WANG C H, AN D, HAN C, et al. Simulation and tests for new tubular type energy-absorbing and anti-impact members with stiffened plate under rock burst [J]. Journal of Vibration and Shock, 2019, 38(11): 203–210, 241. doi: 10.13465/j.cnki.jvs.2019.11.030
    [4] HA N S, PHAM T M, HAO H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing [J]. International Journal of Mechanical Sciences, 2021, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
    [5] ALBAK E İ. Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions [J]. Thin-Walled Structures, 2021, 164: 107886. doi: 10.1016/j.tws.2021.107886
    [6] NAGARJUN J, KUMAR A P, REDDY K Y, et al. Dynamic crushing and energy absorption performance of newly designed multitubular structures [J]. Materials Today: Proceedings, 2020, 27: 1928–1933. doi: 10.1016/j.matpr.2020.04.103
    [7] ZHANG Y, HE N, HOU Y B. Crashworthiness optimization of a vertex fractal hexagonal structure [J]. International Journal of Computational Methods, 2020, 17(7): 1950031. doi: 10.1142/S0219876219500312
    [8] BUYALICH G D, BUYALICH K G, VOYEVODIN V V. Radial deformations of working cylinder of hydraulic legs depending on their extension [J]. IOP Conference Series: Materials Science and Engineering, 2015, 91(1): 012087. doi: 10.1088/1757-899X/91/1/012087
    [9] 刘欣科, 赵忠辉, 赵锐. 冲击载荷作用下液压支架立柱动态特性研究 [J]. 煤炭科学技术, 2012, 40(12): 66–70. doi: 10.13199/j.cst.2012.12.72.liuxk.028

    LIU X K, ZHAO Z H, ZHAO R. Study on dynamic features of leg applied to hydraulic powered support under bumping load [J]. Coal Science and Technology, 2012, 40(12): 66–70. doi: 10.13199/j.cst.2012.12.72.liuxk.028
    [10] 张建卓, 张佳林. 吸能型防冲立柱液体冲击问题研究 [J]. 振动与冲击, 2020, 39(8): 51–57. doi: 10.13465/j.cnki.jvs.2020.08.008

    ZHANG J Z, ZHANG J L. A study on liquid shock of energy-absorbing anti-impact hydraulic column [J]. Journal of Vibration and Shock, 2020, 39(8): 51–57. doi: 10.13465/j.cnki.jvs.2020.08.008
    [11] 肖晓春, 朱恒, 徐军, 等. 含泡沫铝填充多胞方管吸能立柱防冲特性数值研究 [J]. 煤炭科学技术, 2023, 51(10): 302–311. doi: 10.13199/j.cnki.cst.2022-1608

    XIAO X C, ZHU H, XU J, et al. Numerical study on anti-impact characteristics of energy absorbing column with multicellular square tube filled with aluminum foam [J]. Coal Science and Technology, 2023, 51(10): 302–311. doi: 10.13199/j.cnki.cst.2022-1608
    [12] 田立勇, 周禹鹏, 孙业新, 等. 防冲支架立柱多胞薄壁吸能构件能量吸收性能 [J]. 煤炭学报, 2023, 48(5): 2224–2235. doi: 10.13225/j.cnki.jccs.2022.0903

    TIAN L Y, ZHOU Y P, SUN Y X, et al. Energy absorption performance of multicellular thin-walled energy-absorbing components of anti-shock support columns [J]. Journal of China Coal Society, 2023, 48(5): 2224–2235. doi: 10.13225/j.cnki.jccs.2022.0903
    [13] 张煜航, 武晓东, 庄大杰, 等. 泡沫铝填充半球壳结构动力学特性研究 [J]. 兵器装备工程学报, 2023, 44(6): 65–73. doi: 10.11809/bqzbgcxb2023.06.009

    ZHANG Y H, WU X D, ZHUANG D J, et al. Study on dynamic characteristics of aluminum foam-filled hemisphere shell [J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 65–73. doi: 10.11809/bqzbgcxb2023.06.009
    [14] 张佳林. 吸能型防冲液压立柱抗冲击特性研究 [D]. 阜新: 辽宁工程技术大学, 2019.

    ZHANG J L. Study on impact resistance of energy-absorbing anti-impact hydraulic column [D]. Fuxin: Liaoning Technical University, 2019.
    [15] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. doi: 10.1016/S0263-8231(01)00006-4
    [16] 田立勇, 于晓涵, 周禹鹏, 等. 液压支架立柱防冲吸能构件优化仿真及压溃实验研究 [J]. 煤炭学报, 2024, 49(6): 2924–2936. doi: 10.13225/j.cnki.jccs.2023.0676

    TIAN L Y, YU X H, ZHOU Y P, et al. Optimization simulation and crushing experiment of anti-impact energy absorption component of hydraulic support column [J]. Journal of China Coal Society, 2024, 49(6): 2924–2936. doi: 10.13225/j.cnki.jccs.2023.0676
    [17] 潘一山, 肖永惠, 李国臻. 巷道防冲液压支架研究及应用 [J]. 煤炭学报, 2020, 45(1): 90–99. doi: 10.13225/j.cnki.jccs.YG19.1762

    PAN Y S, XIAO Y H, LI G Z. Roadway hydraulic support for rockburst prevention in coal mine and its application [J]. Journal of China Coal Society, 2020, 45(1): 90–99. doi: 10.13225/j.cnki.jccs.YG19.1762
    [18] 吴明泽, 张晓伟, 张庆明. 材料和内边界约束对薄壁圆管轴向压缩吸能特性的影响研究 [J]. 应用力学学报, 2020, 37(4): 1415–1421. doi: 10.11776/cjam.37.04.D037

    WU M Z, ZHANG X W, ZHANG Q M. Effects of material properties and inner-constraints on the energy absorption of thin-walled circular tube under axial compression [J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1415–1421. doi: 10.11776/cjam.37.04.D037
    [19] 杜常赞. 闭孔泡沫铝压缩性能实验与仿真研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

    DU C Z. Experimental and simulation study on compression performance of closed cell aluminum foam [D]. Harbin: Harbin Institute of Technology, 2021.
    [20] 曹梦真, 邱田伟, 安钰坤. 泡沫铝有限元仿真模型研究现状 [J]. 中国材料进展, 2024, 43(4): 323–330. doi: 10.7502/j.issn.1674-3962.202210016

    CAO M Z, QIU T W, AN Y K. Research status of finite element simulation model of aluminum foams [J]. Materials China, 2024, 43(4): 323–330. doi: 10.7502/j.issn.1674-3962.202210016
    [21] LI W W, LUO Y H, LI M, et al. A more weight-efficient hierarchical hexagonal multi-cell tubular absorber [J]. International Journal of Mechanical Sciences, 2018, 140: 241–249. doi: 10.1016/j.ijmecsci.2018.03.006
    [22] MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens [J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186–1202. doi: 10.1590/1679-78252446
    [23] 周颖, 潘一山, 张建卓, 等. 高压大流量安全阀卸荷过程模型构建及仿真分析 [J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(1): 136–140. doi: 10.11956/j.issn.1008-0562.2018.01.024

    ZHOU Y, PAN Y S, ZHANG J Z, et al. Model building for unloading process of high pressure large flow relief valve and its simulation analysis [J]. Journal of Liaoning Technical University (Natural Science), 2018, 37(1): 136–140. doi: 10.11956/j.issn.1008-0562.2018.01.024
    [24] 赵怀志, 王晓东. 液压支架大流量安全阀冲击特性影响因素仿真分析 [J]. 液压与气动, 2022, 46(2): 131–137. doi: 10.11832/j.issn.1000-4858.2022.02.017

    ZHAO H Z, WANG X D. Simulation analysis of influencing factors on impact characteristics of large flow safety valve for hydraulic support [J]. Chinese Hydraulics & Pneumatics, 2022, 46(2): 131–137. doi: 10.11832/j.issn.1000-4858.2022.02.017
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  100
  • PDF下载量:  42
出版历程
  • 收稿日期:  2024-11-11
  • 修回日期:  2024-12-18
  • 录用日期:  2025-06-11
  • 网络出版日期:  2025-05-28
  • 刊出日期:  2025-07-07

目录

    /

    返回文章
    返回