基于Taylor杆的高强度钢动态特性研究

初建鹏 冯建程 周方毅 鞠翔宇 白国侠

初建鹏, 冯建程, 周方毅, 鞠翔宇, 白国侠. 基于Taylor杆的高强度钢动态特性研究[J]. 高压物理学报, 2025, 39(6): 064101. doi: 10.11858/gywlxb.20240935
引用本文: 初建鹏, 冯建程, 周方毅, 鞠翔宇, 白国侠. 基于Taylor杆的高强度钢动态特性研究[J]. 高压物理学报, 2025, 39(6): 064101. doi: 10.11858/gywlxb.20240935
CHU Jianpeng, FENG Jiancheng, ZHOU Fangyi, JU Xiangyu, BAI Guoxia. Dynamic Mechanical Behaviors of High Strength Steel Based on Taylor Rod[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064101. doi: 10.11858/gywlxb.20240935
Citation: CHU Jianpeng, FENG Jiancheng, ZHOU Fangyi, JU Xiangyu, BAI Guoxia. Dynamic Mechanical Behaviors of High Strength Steel Based on Taylor Rod[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064101. doi: 10.11858/gywlxb.20240935

基于Taylor杆的高强度钢动态特性研究

doi: 10.11858/gywlxb.20240935
基金项目: 海军潜艇学院青年科研基金(244077)
详细信息
    作者简介:

    初建鹏(1989-),男,硕士,助教,主要从事爆破研究. E-mail:chujianpeng2024@126.com

    通讯作者:

    周方毅(1978-),男,博士,副教授,主要从事爆破研究. E-mail:zfy008009@126.com

  • 中图分类号: O347; O521.2

Dynamic Mechanical Behaviors of High Strength Steel Based on Taylor Rod

  • 摘要: 利用反向Taylor杆撞击实验和数值模拟方法研究了30CrMnSiNi2A钢在高应变率冲击下的动态特性。首先,在Taylor杆冲击实验的基础上,采用Johnson-Cook本构模型和失效模型,对30CrMnSiNi2A钢的反向Taylor杆撞击进行了数值模拟,并将数值模拟结果与实验得到的杆件自由面速度曲线进行对比验证,两者吻合良好。然后,研究了不同长径比的30CrMnSiNi2A钢杆件对反向Taylor杆撞击实验中任意反射面激光干涉测速技术(velocity interferometer system for any reflector,VISAR)测试结果的影响,得到了适用于VISAR测试的Taylor杆长径比范围。最后,运用应力三轴度及损伤度分析了Taylor杆的断裂破坏机理和变形模式,得到了镦粗、蘑菇状变形、花瓣状开裂3种变形模式,并分析了杆件断裂破坏的原因。结果表明:Taylor杆撞击端中心破坏是由于材料受压引起,而撞击端边缘开裂是由于材料处于拉伸状态造成的,且断裂先从边缘开始。

     

  • 图  采用VISAR测试技术的反向Taylor撞击实验装置及示意图

    Figure  1.  Reverse Taylor impact experimental setup and schematic diagram using VISAR testing technology

    图  撞击后的Taylor杆内波系分布

    Figure  2.  Taylor rod internal wave system diagram after impact

    图  反向Taylor杆自由面速度时程曲线

    Figure  3.  Reverse Taylor rod free surface velocity-time history curves

    图  Taylor杆自由面速度时程曲线对比

    Figure  4.  Comparison of free surface velocity-time history curves for Taylor rods

    图  撞击速度为400 m/s的Taylor杆的等效塑性应变分布和结构变形

    Figure  5.  Equivalent plastic strain distribution and structural deformation of Taylor rod with impact velocity of 400 m/s

    图  Taylor杆撞击中2个阶段的几何变形

    Figure  6.  Geometric deformation in two stages of Taylor impact

    图  不同长径比杆件的自由表面速度

    Figure  7.  Free surface velocity of rods with different aspect ratios

    图  不同长径比杆件屈服点处的自由表面速度

    Figure  8.  Free surface velocity at the yield point of rods with different aspect ratios

    图  横向应力测试点所取单元位置(1/4模型)

    Figure  9.  Element positions taken for lateral stress testing points (1/4 model)

    图  10  不同长径比条件下自由面附近内部单元横向应力曲线

    Figure  10.  Lateral stress curves of internal elements near free surfaces with different aspect ratios

    图  11  Taylor杆的1/4模型

    Figure  11.  Modeling diagram of Taylor rod quarter model

    图  12  不同撞击速度下Taylor杆的变形

    Figure  12.  Deformation of Taylor rod at different impact velocities

    图  13  Taylor杆撞击断面的三点塑性应变历程(380 m/s)

    Figure  13.  Three point plastic strain history of Taylor rod impact section (380 m/s)

    图  14  Taylor杆两点的应力三轴度历程与损伤云图(380 m/s)

    Figure  14.  Stress triaxiality history and damage cloud map of Taylor rod at two points (380 m/s)

    图  15  Taylor杆撞击端边缘点和中心点的应力三轴度历程(400 m/s)

    Figure  15.  Stress triaxiality history of Taylor rod impact end edge point and centre point (400 m/s)

    图  16  2种撞击速度下的Taylor杆蘑菇状变形

    Figure  16.  Mushroom shaped deformation of Taylor rod at two different impact velocities

    图  17  失效单元分布(v=475 m/s)

    Figure  17.  Distribution of failed elements (v=475 m/s)

    图  18  边缘开裂的单元应力三轴度历程

    Figure  18.  Stress triaxiality history of edge cracking element

    图  19  中心失效单元的应力三轴度历程

    Figure  19.  Stress triaxiality history of central failure element

    图  20  Taylor杆的花瓣状变形

    Figure  20.  Petal shaped deformation of Taylor rod

    图  21  选取的裂纹失效单元位置

    Figure  21.  Location of selected crack failure element

    图  22  4个典型失效单元的应力三轴度历程及应力状态对裂纹损伤的贡献

    Figure  22.  Stress triaxiality history and damage contribution of stress states of four typical failure elements in cracks

    表  1  反向Taylor实验参数

    Table  1.   Reverse Taylor experiment parameters

    v/(m·s−1) Flyer size/(mm×mm) Taylor rod size/(mm×mm) Length-diameter ratio of Taylor rod
    273 $\varnothing $24×12 $\varnothing $5×40.0 8.0
    400 $\varnothing $24×12 $\varnothing $5×40.0 8.0
    下载: 导出CSV

    表  2  30CrMnSiNi2A钢反向Taylor实验参数

    Table  2.   Reverse Taylor experimental parameters of 30CrMnSiNi2A steel

    v/(m·s−1) ufs/(m·s−1) up/(m·s−1) $ {\sigma _{\rm{Y}}} $/MPa $ \varepsilon $/10−3 $ \dot \varepsilon $/s−1
    273 77.10 38.55 1 560 8.34 4 109
    400 77.85 38.93 1 600 8.42 4 617
    下载: 导出CSV

    表  3  30CrMnSiNi2A钢[15]和304不锈钢的材料参数

    Table  3.   Material parameters of 30CrMnSiNi2A steel[15] and 304 stainless steel

    Materialρ/(g·cm−3)E/GPaA/GPaB/GPaCnm
    30CrMnSiNi2A steel[15]7.82171.580.380.0200.2451.06
    304 stainless steel7.82070.340.250.0140.2101.03
    下载: 导出CSV

    表  4  Taylor杆尺寸

    Table  4.   Taylor rod size

    Flyer size/(mm×mm) l/d Taylor rod size/(mm×mm) Flyer size/(mm×mm) l/d Taylor rod size/(mm×mm)
    $\varnothing $24×12 2.5 $\varnothing $5×12.5 $\varnothing $24×12 6.0 $\varnothing $5×30.0
    3.0 $\varnothing $5×15.0 7.0 $\varnothing $5×35.0
    4.0 $\varnothing $5×20.0 8.0 $\varnothing $5×40.0
    5.0 $\varnothing $5×25.0
    下载: 导出CSV

    表  5  不同长径比Taylor杆的数值模拟结果

    Table  5.   Statistical analysis of numerical simulation of Taylor rods with different aspect ratios

    l/d $\Delta {u_{\rm{fs}}} $/(m·s−1) Expansion area Lateral stress tend to zero Stress state
    2.5 120 No No Three-dimensional
    3.0 113 No No Three-dimensional
    4.0 82 Yes Yes One-dimensional
    5.0 79 Yes Yes One-dimensional
    6.0 78 Yes Yes One-dimensional
    7.0 77 Yes Yes One-dimensional
    8.0 77 Yes Yes One-dimensional
    下载: 导出CSV

    表  6  不同应力场下的应力状态参数

    Table  6.   Stress state parameter values under different stress fields

    Loading method Principal stress component σ*
    σ1 σ2 σ3
    Three directions equal pull σ σ σ Positive infinity
    Three directions unequal pull σ σ 0.5σ 1.67
    Two way equal pull σ σ 0 0.67
    Uniaxial tension σ 0 0 0.33
    Torsion σ 0 σ 0
    Uniaxial compression 0 0 σ –0.33
    Two-direction equal pressure 0 σ σ –0.67
    Three-direction unequal pressure –0.5σ σ σ –1.67
    Three-direction uniform pressure σ σ σ Negative infinity
    下载: 导出CSV

    表  7  不同撞击速度下超高强度钢Taylor杆的变形及断裂情况

    Table  7.   Deformation and fracture modes of Taylor rod with ultra-high strength steel under different impact velocities

    v/(m·s−1) d0/mm l0/mm df/mm lf/mm Deformation and fracture modes
    180 5 40.0 6.20 37.80 Slight deformation
    230 5 40.0 7.20 36.60 Upsetting
    273 5 40.0 7.70 36.30 Upsetting
    350 5 40.0 9.60 33.95 Upsetting
    380 5 40.0 10.63 33.00 Upsetting
    400 5 40.0 11.30 32.35 Mushroom shaped deformation
    450 5 40.0 12.92 30.58 Mushroom shaped deformation
    475 5 40.0 13.84 29.81 Mushroom shaped deformation
    500 5 40.0 14.01 28.95 Petal shaped cracking
    550 5 40.0 27.08 Petal shaped cracking
    610 5 40.0 21.03 Petal shaped cracking
    下载: 导出CSV
  • [1] 余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究 [J]. 爆炸与冲击, 2021, 41(3): 031404. doi: 10.11883/bzycj-2020-0334

    YU W Q, YU R, CUI S T, et al. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality [J]. Explosion and Shock Waves, 2021, 41(3): 031404. doi: 10.11883/bzycj-2020-0334
    [2] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. doi: 10.11858/gywlxb.2017.03.005

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. doi: 10.11858/gywlxb.2017.03.005
    [3] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. doi: 10.3321/j.issn:1001-1455.2005.05.010

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. doi: 10.3321/j.issn:1001-1455.2005.05.010
    [4] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. doi: 10.3321/j.issn:1001-1455.2007.02.007

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. doi: 10.3321/j.issn:1001-1455.2007.02.007
    [5] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
    [6] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [7] CHEN X W, CHEN G, ZHANG F J. Deformation and failure modes of soft steel projectiles impacting harder steel targets at increasing velocity [J]. Experimental Mechanics, 2008, 48(3): 335–354. doi: 10.1007/s11340-007-9110-4
    [8] 黄魏银, 陈刚, 李俊承, 等. 半球头和平头试件的泰勒撞击 [J]. 高压物理学报, 2021, 35(3): 034204. doi: 10.11858/gywlxb.20200643

    HUANG W Y, CHEN G, LI J C, et al. Hemispherical and flat head cylindrical specimen Taylor impact [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034204. doi: 10.11858/gywlxb.20200643
    [9] 沈子楷, 戴湘晖, 王可慧, 等. Taylor撞击塑性变形的尺寸效应研究 [J]. 振动与冲击, 2023, 42(17): 86–95.

    SHEN Z K, DAI X H, WANG K H, et al. Size effect of Taylor impact plastic deformation [J]. Journal of Vibration and Shock, 2023, 42(17): 86–95.
    [10] TENG X, WIERZBICKI T, HIERMAIER S, et al. Numerical prediction of fracture in the Taylor test [J]. International Journal of Solids and Structures, 2005, 42(9/10): 2929–2948.
    [11] TENG X Q, WIERZBICKI T. Effect of fracture criteria on high velocity perforation of thin beams [J]. International Journal of Computational Methods, 2004, 1(1): 171–200. doi: 10.1142/S0219876204000058
    [12] GAUTAM S S, BABU R, DIXIT P M. Ductile fracture simulation in the Taylor rod impact test using continuum damage mechanics [J]. International Journal of Damage Mechanics, 2011, 20(3): 347–369. doi: 10.1177/1056789509357119
    [13] VON KARMAN T, DUWEZ P. The propagation of plastic deformation in solids [J]. Journal of Applied Physics, 1950, 21(10): 987–994.
    [14] ROHR I, NAHME H, THOMA K. Material characterization and constitutive modelling of ductile high strength steel for a wide range of strain rates [J]. International Journal of Impact Engineering, 2005, 31(4): 401–433.
    [15] 武海军, 姚伟, 黄风雷, 等. 超高强度钢30CrMnSiNi2A动态力学性能实验研究 [J]. 北京理工大学学报, 2010, 30(3): 258–262.

    WU H J, YAO W, HUANG F L, et al. Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel [J]. Transactions of Beijing Institute of Technology, 2010, 30(3): 258–262.
    [16] TAYLOR G I. The use of flat-ended projectiles for determining dynamic yield stress Ⅰ. theoretical considerations [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1948, 194(1038): 289–299.
    [17] JOHNSON G R, HOLMQUIST T J. Evaluation of cylinder-impact test data for constitutive model constants [J]. Journal of Applied Physics, 1988, 64(8): 3901–3910.
    [18] ALLEN D J, RULE W K, JONES S E. Optimizing material strength constants numerically extracted from Taylor impact data [J]. Experimental Mechanics, 1997, 37(3): 333–338. doi: 10.1007/BF02317427
    [19] JONES S E, GILLIS P P, FOSTER JR J C, et al. A one-dimensional, two-phase flow model for Taylor impact specimens [J]. Journal of Engineering Materials and Technology, 1991, 113(2): 228–235.
    [20] 王习术. 材料力学行为试验与分析 [M]. 北京: 清华大学出版社, 2010.

    WANG X S. Test and analysis on mechanical behavior of materials [M]. Beijing: Tsinghua University Press, 2010.
    [21] 李庆芬. 断裂力学及其工程应用 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2005: 17−29.

    LI Q F. Fracture mechanics and its engineering applications [M]. Harbin: Harbin Engineering University Press, 2005: 17−29.
    [22] 郑长卿. 金属韧性破坏的细观力学及其应用研究 [M]. 北京: 国防工业出版社, 1995.

    ZHENG C Q. Study on the micromechanics and application of metal toughness failure [M]. Beijing: National Defense Industry Press, 1995.
    [23] 马向宇. 基于应力状态的金属材料变形行为研究 [D]. 太原: 太原科技大学, 2013.

    MA X Y. Research on deformation behavior of metal materials based on stress state [D]. Taiyuan: Taiyuan University of Science and Technology, 2013.
  • 加载中
图(22) / 表(7)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  29
  • PDF下载量:  13
出版历程
  • 收稿日期:  2024-11-07
  • 修回日期:  2024-12-03
  • 录用日期:  2025-03-17
  • 网络出版日期:  2025-05-09
  • 刊出日期:  2025-06-05

目录

    /

    返回文章
    返回