爆炸作用下全户内变电站装配式墙板动力响应的有限元分析

李林 刘勇 魏珍中 马小敏 雷建银 李世强

李林, 刘勇, 魏珍中, 马小敏, 雷建银, 李世强. 爆炸作用下全户内变电站装配式墙板动力响应的有限元分析[J]. 高压物理学报, 2025, 39(6): 064204. doi: 10.11858/gywlxb.20240934
引用本文: 李林, 刘勇, 魏珍中, 马小敏, 雷建银, 李世强. 爆炸作用下全户内变电站装配式墙板动力响应的有限元分析[J]. 高压物理学报, 2025, 39(6): 064204. doi: 10.11858/gywlxb.20240934
LI Lin, LIU Yong, WEI Zhenzhong, MA Xiaomin, LEI Jianyin, LI Shiqiang. Dynamic Response of Prefabricated Wall Panels for a Whole-Indoor Substation under Blast Loading Based on Finite Element Simulation[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064204. doi: 10.11858/gywlxb.20240934
Citation: LI Lin, LIU Yong, WEI Zhenzhong, MA Xiaomin, LEI Jianyin, LI Shiqiang. Dynamic Response of Prefabricated Wall Panels for a Whole-Indoor Substation under Blast Loading Based on Finite Element Simulation[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064204. doi: 10.11858/gywlxb.20240934

爆炸作用下全户内变电站装配式墙板动力响应的有限元分析

doi: 10.11858/gywlxb.20240934
基金项目: 国家自然科学基金(12072219,12202303,12372363)
详细信息
    作者简介:

    李 林(1981-),男,硕士,高级工程师,主要从事变电土建研究. E-mail:lilina@sdepci.com

    通讯作者:

    雷建银(1989-),男,博士,副教授,主要从事冲击动力学研究. E-mail:leijianyin@tyut.edu.cn

  • 中图分类号: O347.1; O521.9

Dynamic Response of Prefabricated Wall Panels for a Whole-Indoor Substation under Blast Loading Based on Finite Element Simulation

  • 摘要: 蜂窝芯层具有轻质、比刚度高、比强度高和比吸能高等优点。将纤维混凝土板、蜂窝芯层、铝合金板组合设计一种新型变电站装配式墙板结构,对其进行爆炸冲击实验,研究不同炸药药量、蜂窝孔径下结构的动力学响应。基于实验建立相应的有限元模型,数值模拟结果与实验吻合较好。通过改变炸药量和蜂窝芯层配置,详细分析了结构变形失效演化过程、后面板中点挠度、能量分配特性。结果表明:结构主要呈现前面板凹陷、后面板凸起的变形模式;纤维水泥前面板边界处发生了剪切破坏,同时蜂窝芯层被压缩,导致整体变形,随后前面板与蜂窝芯层分离,后面板中心处以及对角线处出现裂纹,并且随着结构继续响应,裂纹不断扩展,芯层压缩量也同时增加。减小蜂窝芯层孔径能够有效降低后面板的挠度。装药距离为300 mm,药量为300、500和700 g时,小孔径蜂窝结构后面板中点的挠度相较于大孔径蜂窝结构分别降低了18.5%、17.1%和18.1%,小孔径蜂窝结构的吸能比大孔径蜂窝结构分别增大了7.8%、6.7%和2.2%,小孔径蜂窝结构具有较好的抗冲击性能。爆炸载荷下,纤维混凝土前面板的吸收能量最大,占50%以上;蜂窝芯层的能量吸收次之,占比为45%左右;纤维混凝土后面板的吸能较少,在5%以内。

     

  • 图  爆炸装置和装配式墙板构成

    Figure  1.  Explosive device and assembled wall panel configuration

    图  有限元模型

    Figure  2.  Finite element model

    图  S1038结构的数值模拟与实验结果对比

    Figure  3.  Comparison of numerical simulation and experimental results of S1038 structure

    图  S1038结构的能量时程曲线

    Figure  4.  Energy-time history curves of S1038 structure

    图  载荷分布特征

    Figure  5.  Load distribution characteristics

    图  S1038结构的响应过程

    Figure  6.  Response process of the S1038 structure

    图  S520蜂窝芯层结构后面板的裂纹扩展情况

    Figure  7.  Crack propagation in the back panel of S520 honeycomb core structure

    图  S1038蜂窝芯层结构后面板的裂纹扩展情况

    Figure  8.  Crack propagation in the back panel of S1038 honeycomb core structure

    图  相同爆炸距离、不同炸药药量下S1038蜂窝芯层结构的数值模拟结果

    Figure  9.  Numerical simulation results of S1038 honeycomb core structure at the same blast distance with different explosives charges

    图  10  相同爆炸距离、不同炸药药量下S520蜂窝芯层结构的数值模拟结果

    Figure  10.  Numerical simulation results of S520 honeycomb core structure at the same blast distance with different explosives charges

    图  11  蜂窝芯层结构后面板中点的最大挠度

    Figure  11.  Maximum deflection at the center point of the back panel of honeycomb core structure

    图  12  结构各部分的能量吸收

    Figure  12.  Energy absorption in each part of the structure

    图  13  S520结构和S1038结构在不同炸药药量下各部分的能量吸收占比

    Figure  13.  Percentage of energy absorbed by each part of S520 structure and S1038 structure at different explosive charge

    图  14  不同芯层厚度S520蜂窝芯层结构的能量吸收占比

    Figure  14.  Energy absorption ratio of S520 honeycomb core structure with different core thicknesses

    图  15  不同芯层厚度S1038蜂窝芯层结构的能量吸收占比

    Figure  15.  Energy absorption ratio of S1038 honeycomb core structure with different core thicknesses

    表  1  铝合金的材料参数

    Table  1.   Material parameters of aluminum alloy

    $ \mathrm{\rho } $/(kg·m−3) E/GPa $ \mu $ $ {\mathrm{\sigma }}_{\mathrm{y}} $/MPa
    2900 65.67 0.30 255
    下载: 导出CSV

    表  2  纤维混凝土的材料参数

    Table  2.   Material parameters of fiber concrete

    $ \rho $/(kg·m−3) G/MPa $ \mathrm{\mathit{F}}_{\mathrm{c}} $/MPa A B C $ {\varepsilon }_{\mathrm{f}\mathrm{m}\mathrm{i}\mathrm{n}} $
    2.500 0.1343 3.000×10−4 0.20 1.85 0.006 0.004
    N $ {S}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ T/MPa $ {p}_{\mathrm{c}} $/MPa $ {\mu }_{\mathrm{c}} $ $ {p}_{\mathrm{L}} $/MPa $ {\dot \varepsilon _0}/{{\text{s}}^{ - 1}} $
    0.610 15.00 2.500×10−5 7.000×10−5 0.005 0.0121 1
    $ {\mu }_{\mathrm{L}} $ $ {K}_{1} $/GPa $ {K}_{2} $/GPa $ {K}_{3} $/GPa $ {D}_{1} $ $ {D}_{2} $ $ {f}_{\mathrm{s}} $
    0.1200 8.500×10−7 −1.71×10−6 2.08×10−6 0.040 0.500 0.80
    下载: 导出CSV

    表  3  蜂窝芯层的材料参数

    Table  3.   Material parameters of honeycomb core

    $ \rho $/(kg·m−3)E/MPa$ \mu $
    45089.50
    下载: 导出CSV
  • [1] 中华人民共和国住房和城乡建设部. 火力发电厂与变电站设计防火标准:GB 50229—2019 [S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for design of fire protection for fossil fuel power plants and substations: GB 50229—2019 [S]. Beijing: China Planning Press, 2019.
    [2] 黄荣健, 房涛, 张兴卫. 考虑基础-结构动力相互作用的500 kV变电站地震预警系统的设计与应用研究 [J]. 中国战略新兴产业, 2024(9): 166–168. doi: 10.12230/j.issn.2095-6657.2024.09.051

    HUANG R J, FANG T, ZHANG X W. Design and application study of seismic early warning system for 500 kV substation considering foundation-structure dynamic interaction [J]. China Strategic Emerging Industry, 2024(9): 166–168. doi: 10.12230/j.issn.2095-6657.2024.09.051
    [3] 刘慕娴, 陆力瑜, 莫蓓蓓, 等. 智能变电站安全运维策略研究 [J]. 新型工业化, 2021, 11(10): 88–90. doi: 10.19335/j.cnki.2095-6649.2021.10.018

    LIU M X, LU L Y, MO B B, et al. Research on security operation and maintenance strategy of smart substation [J]. The Journal of New Industrialization, 2021, 11(10): 88–90. doi: 10.19335/j.cnki.2095-6649.2021.10.018
    [4] JU W H. Study on fire risk and disaster reducing factors of cotton logistics warehouse based on event and fault tree analysis [J]. Procedia Engineering, 2016, 135: 418–426. doi: 10.1016/j.proeng.2016.01.150
    [5] 国网基建部. 变电站模块化建设2.0版技术导则 [R]. 2021.
    [6] ZHU F, WANG Z H, LU G X, et al. The impulsive response of aluminium foam core sandwich structures [J]. International Journal of Materials Engineering Innovation, 2009, 1(2): 133–153. doi: 10.1504/IJMATEI.2009.029361
    [7] 崔天宁, 秦庆华. 轻质多孔夹芯结构的弹道侵彻行为研究进展 [J]. 力学进展, 2023, 53(2): 395–432. doi: 10.6052/1000-0992-23-002

    CUI T N, QIN Q H. Ballistic performance of lightweight cellular sandwich structures: a review [J]. Advances in Mechanics, 2023, 53(2): 395–432. doi: 10.6052/1000-0992-23-002
    [8] 吴志恩. 波音787的复合材料构件生产 [J]. 航空制造技术, 2008(15): 92–94. doi: 10.3969/j.issn.1671-833X.2008.15.021

    WU Z E. Production for composite component of Boeing 787 [J]. Aerospace Manufacturing Technology, 2008(15): 92–94. doi: 10.3969/j.issn.1671-833X.2008.15.021
    [9] 杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. doi: 10.11883/1001-1455(2015)02-0243-06

    YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. doi: 10.11883/1001-1455(2015)02-0243-06
    [10] 胡宗波, 魏敬徽. 爆炸荷载作用下钢板混凝土夹芯砌体防爆墙的防护性能分析 [J]. 钢结构(中英文), 2023, 38(5): 33–42. doi: 10.13206/j.gjgS22102401

    HU Z B, WEI J H. Analysis on protective performance of explosion-proof wall with masonry sandwich steel plate under blast load [J]. Steel Construction (Chinese & English), 2023, 38(5): 33–42. doi: 10.13206/j.gjgS22102401
    [11] CAO K L, FU Q F, MA W C, et al. Study on the underwater anti-explosion mechanism and damage grade prediction of wall panels reinforced by corrugated steel-concrete slab composite structures with different wave heights [J]. Structures, 2024, 60: 105922. doi: 10.1016/j.istruc.2024.105922
    [12] WANG H R, QIU A, LONG S C, et al. Effect of fluid-structure interaction on the underwater blast response and failure of composite panels [J]. Thin-Walled Structures, 2023, 191: 111065. doi: 10.1016/j.tws.2023.111065
    [13] LANGDON G S, KARAGIOZOVA D, THEOBALD M D, et al. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading [J]. International Journal of Impact Engineering, 2010, 37(6): 638–651. doi: 10.1016/j.ijimpeng.2009.07.006
    [14] LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025
    [15] WADLEY H N G, BØRVIK T, OLOVSSON L, et al. Deformation and fracture of impulsively loaded sandwich panels [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 674–699. doi: 10.1016/j.jmps.2012.07.007
    [16] NI C Y, JIN F, LU T J. Penetration of sandwich plates with hybrid-cores under oblique ballistic impact [J]. Theoretical and Applied Mechanics Letters, 2014, 4(2): 021001. doi: 10.1063/2.1402101
    [17] 李林, 刘勇, 魏珍中, 等. 爆炸作用下全户内变电站装配式墙板的动力响应实验研究 [J]. 高压物理学报, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873

    LI L, LIU Y, WEI Z Z, et al. Dynamic response experiment of prefabricated wall panels for a whole-indoor substation under blast loading [J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873
    [18] 王嵩, 刘润清, 赵硕, 等. 玄武岩纤维混凝土动态力学性能及数值模拟 [J]. 混凝土与水泥制品, 2022(7): 64–68. doi: 10.19761/j.1000-4637.2022.07.064.05

    WANG S, LIU R Q, ZHAO S, et al. Dynamic mechanical properties and numerical simulation of basalt fiber reinforced concrete [J]. China Concrete and Cement Products, 2022(7): 64–68. doi: 10.19761/j.1000-4637.2022.07.064.05
    [19] 杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程, 2011, 11(15): 3377–3383. doi: 10.3969/j.issn.1671-1815.2011.15.005

    YANG F, WANG Z H, ZHAO L M. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels [J]. Science Technology and Engineering, 2011, 11(15): 3377–3383. doi: 10.3969/j.issn.1671-1815.2011.15.005
    [20] HALLQUIST J O. LS-DYNA keyword user’s manual version 971 [R]. Livermore: Livermore Software Technology Corporation, 2007.
    [21] SUN G Y, ZHANG J T, LI S Q, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading [J]. Thin-Walled Structures, 2019, 142: 499–515. doi: 10.1016/j.tws.2019.04.029
    [22] WU G, WANG X, WANG Y T, et al. Blast response of bioinspired nacre-like staggered composite plates combined with steel and polyurea [J]. International Journal of Impact Engineering, 2023, 180: 104719. doi: 10.1016/j.ijimpeng.2023.104719
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  20
  • PDF下载量:  11
出版历程
  • 收稿日期:  2024-11-06
  • 修回日期:  2024-12-04
  • 网络出版日期:  2025-06-05
  • 刊出日期:  2025-06-05

目录

    /

    返回文章
    返回