山岭公路隧道多级别围岩爆破振动传播规律及预测

黄剑 蒋楠 杨玉民

黄剑, 蒋楠, 杨玉民. 山岭公路隧道多级别围岩爆破振动传播规律及预测[J]. 高压物理学报, 2025, 39(8): 085302. doi: 10.11858/gywlxb.20240922
引用本文: 黄剑, 蒋楠, 杨玉民. 山岭公路隧道多级别围岩爆破振动传播规律及预测[J]. 高压物理学报, 2025, 39(8): 085302. doi: 10.11858/gywlxb.20240922
HUANG Jian, JIANG Nan, YANG Yumin. Propagation Laws and Prediction of Blasting Vibration in Mountain Highway Tunnels with Multi-Level Surrounding Rock[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085302. doi: 10.11858/gywlxb.20240922
Citation: HUANG Jian, JIANG Nan, YANG Yumin. Propagation Laws and Prediction of Blasting Vibration in Mountain Highway Tunnels with Multi-Level Surrounding Rock[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085302. doi: 10.11858/gywlxb.20240922

山岭公路隧道多级别围岩爆破振动传播规律及预测

doi: 10.11858/gywlxb.20240922
基金项目: 国家自然科学基金(42102329,52478525);湖北省自然科学基金杰出青年项目(2024AFA092);江汉大学省部共建精细爆破国家重点实验室-江汉大学爆破工程湖北省重点实验室联合开放基金(PBSKL2023A1)
详细信息
    作者简介:

    黄 剑(1984-),男,本科,高级工程师,主要从事隧道爆破开挖研究. E-mail:229169791@qq.com

    通讯作者:

    蒋 楠(1986-),男,博士,教授,主要从事隧道工程稳定性研究. E-mail:jiangnan@jhun.edu.cn

  • 中图分类号: U455.6; O521.9

Propagation Laws and Prediction of Blasting Vibration in Mountain Highway Tunnels with Multi-Level Surrounding Rock

  • 摘要: 为实现复杂地质环境下隧道爆破振动的有效控制,明晰爆破振动传播规律、准确预测爆破振动速度是爆破安全施工中的重要关注内容。依托高速公路猴屿隧道多级别围岩多方案爆破实际工程,通过LS-DYNA分析了不同爆破方式下不同级别围岩的振动衰减特征,并利用现场试验验证了数值模拟的合理性,最后采用量纲分析理论建立了考虑地表高程差影响的振速预测模型。结果表明:随着爆源距增加,合振速先迅速衰减后缓慢衰减,其中已开挖区隧道上部围岩振速大于未开挖区,围岩强度等级和围岩振动速度整体上呈负相关关系。对于围岩合振速,采用上下台阶留核心土法时最大,单侧壁导坑法-右侧上台阶爆破次之,单侧壁导坑法-左侧壁导坑爆破最小;而对于围岩合振速衰减速率,单侧壁导坑法-右侧上台阶爆破时最大,上下台阶留核心土法次之,单侧壁导坑法-左侧壁导坑爆破时最小。采用上下台阶留核心土法时,埋地管道、建筑群、寺庙、油库的最小安全距离分别为95、81、447和73 m;采用单侧壁导坑法时,埋地管道、建筑群、寺庙、油库的最小安全距离分别为56、72、327和71 m。

     

  • 图  工程概况

    Figure  1.  Project overview

    图  掏槽孔布置

    Figure  2.  Layout of cutting holes

    图  炮孔布置

    Figure  3.  Layout of blastholes

    图  爆破等效荷载曲线

    Figure  4.  Equivalent load curves of blasting

    图  数值模型示意图

    Figure  5.  Schematic diagram of numerical model

    图  监测点布置

    Figure  6.  Layout of monitoring points

    图  数值模拟与现场试验得到的振动波形的对比

    Figure  7.  Comparison of vibration waveforms between numerical simulation and field tests

    图  合振速变化云图

    Figure  8.  Cloud maps of resultant vibration velocity

    图  数值模型中不同方向示意图

    Figure  9.  Schematic diagram of numerical model in different directions

    图  10  不同方向上合振速的衰减曲线

    Figure  10.  Attenuation curves of vr in different directions

    图  11  上下台阶留核心土法下岩体合振速与爆源距的关系

    Figure  11.  Relationship between the vr and explosion source distance under reserved core soil method for step excavation

    图  12  单侧壁导坑法-左侧壁导坑爆破下岩体合振速与爆源距的关系

    Figure  12.  Relationship between the vr and explosion source distance under single side drift method (left side drift)

    图  13  单侧壁导坑法-右侧上台阶爆破下岩体合振速与爆源距的关系

    Figure  13.  Relationships between the vr and explosion source distance under single side drift method (right upper bench)

    图  14  不同开挖方式下岩体合振速与爆源距的关系

    Figure  14.  Relationship between the vr and explosion source distance under different excavation methods

    表  1  围岩的物理力学参数

    Table  1.   Physical and mechanical parameters of surrounding rock

    Rock grade Density/(g·cm−3) Elastic modulus/GPa Poisson’s ratio Yield strength/MPa Shear modulus/GPa
    2.40 27.72 0.26 60 11.00
    2.20 9.50 0.32 45 3.60
    2.10 4.08 0.36 36 1.50
    下载: 导出CSV

    表  2  数值模拟工况

    Table  2.   Numerical simulation conditions

    CaseExcavation methodRock grade
    1Reserved core soil method for step excavation
    2Reserved core soil method for step excavation
    3Single side drift method (left side drift)
    4Single side drift method (left side drift)
    5Single side drift method (right upper bench)
    6Single side drift method (right upper bench)
    下载: 导出CSV

    表  3  数值模拟与现场试验得到的振速结果的对比

    Table  3.   Comparison of vibration velocity results between numerical simulation and field tests

    Monitoring
    point
    vx vy
    Num./(cm·s−1) Test/(cm·s−1) Error/% Num./(cm·s−1) Test/(cm·s−1) Error/%
    1 0.025 0.023 8.343 0.302 0.270 10.566
    2 0.022 0.020 7.356 0.278 0.252 9.345
    3 0.017 0.015 9.763 0.241 0.215 10.864
    4 0.014 0.013 6.535 0.218 0.201 7.934
    5 0.012 0.011 7.745 0.193 0.176 8.935
    Monitoring
    point
    vz vr
    Num./(cm·s−1) Test/(cm·s−1) Error/% Num./(cm·s−1) Test/(cm·s−1) Error/%
    1 1.279 1.155 9.687 1.605 1.399 12.854
    2 1.057 0.933 11.742 1.236 1.103 10.745
    3 0.887 0.809 8.738 0.974 0.879 9.734
    4 0.796 0.723 9.176 0.867 0.786 9.246
    5 0.709 0.634 10.646 0.777 0.694 10.745
    下载: 导出CSV

    表  4  爆破振动速度的影响因素及其量纲

    Table  4.   Influence factors of blasting vibration velocity and their dimensions

    Influence factor Dimension Influence factor Dimension
    Q M r L
    H L ρ ML−3
    vr LT−1 c LT−1
    下载: 导出CSV

    表  5  不同保护对象的安全控制距离

    Table  5.   Safety distance for different protection objects

    Excavation methodRock gradeSafety distance/m
    Gas pipelineBuildingTempleOil depot
    Reserved core soil method
    for step excavation
    587422471
    958144773
    Single side drift method
    (left side drift)
    40717071
    567232771
    Single side drift method
    (right upper bench)
    417115371
    427113371
    下载: 导出CSV
  • [1] 王子一, 吴桂义, 罗畅, 等. 多次爆破振动下陡边坡振动响应及稳定性研究 [J]. 爆破, 2023, 40(3): 158–169, 176. doi: 10.3963/j.issn.1001-487X.2023.03.022

    WANG Z Y, WU G Y, LUO C, et al. Study on vibration response and stability of steep slope under multiple blasting vibrations [J]. Blasting, 2023, 40(3): 158–169, 176. doi: 10.3963/j.issn.1001-487X.2023.03.022
    [2] 闵鹏, 谢俊, 申玉生, 等. 考虑自由面参数影响的地铁隧道爆破振速预测公式优化研究 [J]. 振动与冲击, 2023, 42(21): 245–253, 283. doi: 10.13465/j.cnki.jvs.2023.21.029

    MIN P, XIE J, SHEN Y S, et al. Optimization of prediction formula for blasting vibration velocity of subway tunnels considering effects of free surface parameters [J]. Journal of Vibration and Shock, 2023, 42(21): 245–253, 283. doi: 10.13465/j.cnki.jvs.2023.21.029
    [3] 何丽平, 汪晓俊, 郭剑雄, 等. 砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究 [J]. 高压物理学报, 2023, 37(5): 055301. doi: 10.11858/gywlxb.20230666

    HE L P, WANG X J, GUO J X, et al. Field experimental research on blasting vibration attenuation law of sand-mudstone interbedded rock slope [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055301. doi: 10.11858/gywlxb.20230666
    [4] 赵茉溪, 杨玉民, 周传波, 等. 基于MD-PCA-BP模型的露天矿山爆破振动速度预测 [J]. 爆破, 2024, 41(2): 203–211. doi: 10.3963/j.issn.1001-487X.2024.02.025

    ZHAO M X, YANG Y M, ZHOU C B, et al. Prediction of blasting vibration velocity in open-pit mine based on MD-PCA-BP model [J]. Blasting, 2024, 41(2): 203–211. doi: 10.3963/j.issn.1001-487X.2024.02.025
    [5] 汪艮忠, 胡宇, 周汉红, 等. 浅埋偏压隧道掘进爆破地表振动效应研究 [J]. 工程爆破, 2023, 29(6): 147–152, 166. doi: 10.19931/j.EB.20230134

    WANG G Z, HU Y, ZHOU H H, et al. Study on surface vibration effect of shallow-buried bias tunnel [J]. Engineering Blasting, 2023, 29(6): 147–152, 166. doi: 10.19931/j.EB.20230134
    [6] 高军伟, 赵岩, 王奔. 立体交叉铁路隧道爆破振动效应的研究 [J]. 爆破器材, 2023, 52(6): 39–47. doi: 10.3969/j.issn.1001-8352.2023.06.007

    GAO J W, ZHAO Y, WANG B. Vibration law in the blasting of railway tunnels with interchange [J]. Explosive Materials, 2023, 52(6): 39–47. doi: 10.3969/j.issn.1001-8352.2023.06.007
    [7] 李小帅, 高文学, 宿利平, 等. 小净距隧道掘进爆破及其振动响应规律研究 [J]. 爆破, 2024, 41(2): 194–202. doi: 10.3963/j.issn.1001-487X.2024.02.024

    LI X S, GAO W X, SU L P, et al. Study on attenuation law of blasting vibration in a small clear distance highway tunnel [J]. Blasting, 2024, 41(2): 194–202. doi: 10.3963/j.issn.1001-487X.2024.02.024
    [8] 王亚琼, 杨御博, 高启栋, 等. 无中墙连拱隧道爆破振动响应特性及安全控制措施 [J]. 中国公路学报, 2023, 36(11): 266–277. doi: 10.19721/j.cnki.1001-7372.2023.11.008

    WANG Y Q, YANG Y B, GAO Q D, et al. Study on blast vibration characteristics and safety control measures in the excavation of multi-arch tunnel without a middle wall [J]. China Journal of Highway and Transport, 2023, 36(11): 266–277. doi: 10.19721/j.cnki.1001-7372.2023.11.008
    [9] 柳之森. 地铁隧道下穿黄鹤楼景区爆破振动效应分析 [J]. 爆破, 2023, 40(2): 190–198. doi: 10.3963/j.issn.1001-487X.2023.02.027

    LIU Z S. Blasting vibration effect of subway tunnel underpassing scenic spot of Yellow Crane Tower [J]. Blasting, 2023, 40(2): 190–198. doi: 10.3963/j.issn.1001-487X.2023.02.027
    [10] 吉凌, 周传波, 张波, 等. 大断面隧道爆破作用下围岩动力响应特性与损伤效应研究 [J]. 铁道学报, 2021, 43(7): 161–168. doi: 10.3969/j.issn.1001-8360.2021.07.021

    JI L, ZHOU C B, ZHANG B, et al. Study on dynamic response and damage effect of surrounding rock in large tunnel under blasting excavation [J]. Journal of the China Railway Society, 2021, 43(7): 161–168. doi: 10.3969/j.issn.1001-8360.2021.07.021
    [11] 马晨阳, 吴立, 孙苗. 自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响 [J]. 爆炸与冲击, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436

    MA C Y, WU L, SUN M. Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting [J]. Explosion and Shock Waves, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436
    [12] 陈祥, 刘明学, 祁小博. 爆破振动作用下大型地下洞室群围岩动力响应及合理间距分析 [J]. 振动与冲击, 2021, 40(1): 277–285. doi: 10.13465/j.cnki.jvs.2021.01.036

    CHEN X, LIU M X, QI X B. Dynamic response of surrounding rock of large underground caverns under blast vibration and reasonable spacing between adjacent caverns [J]. Journal of Vibration and Shock, 2021, 40(1): 277–285. doi: 10.13465/j.cnki.jvs.2021.01.036
    [13] 王林台, 高文学, 张发财, 等. 爆破地震作用下建筑物振动响应研究 [J]. 兵工学报, 2018, 39(Suppl 1): 121–134.

    WANG L T, GAO W X, ZHANG F C, et al. Research on blasting vibration response of high-rise building based on model simplification [J]. Acta Armamentarii, 2018, 39(Suppl 1): 121–134.
    [14] 公伟增, 段宝福, 张雪伟, 等. 隧道爆破地震波作用下砌体建筑物振动响应分析 [J]. 科学技术与工程, 2019, 19(33): 377–383. doi: 10.3969/j.issn.1671-1815.2019.33.056

    GONG W Z, DUAN B F, ZHANG X W, et al. Analysis of vibration response of surface masonry buildings under tunnel blasting seismic wave [J]. Science Technology and Engineering, 2019, 19(33): 377–383. doi: 10.3969/j.issn.1671-1815.2019.33.056
    [15] 傅鹤林, 姜智博, 邱琼. 浅埋暗挖隧道爆破对敏感建筑物的影响及优化 [J]. 铁道工程学报, 2023, 40(3): 71–78. doi: 10.3969/j.issn.1006-2106.2023.03.012

    FU H L, JIANG Z B, QIU Q. Influence and optimization of blasting of shallow-buried tunnel on sensitive buildings [J]. Journal of Railway Engineering Society, 2023, 40(3): 71–78. doi: 10.3969/j.issn.1006-2106.2023.03.012
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  71
  • PDF下载量:  20
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-07-26
  • 刊出日期:  2025-08-05

目录

    /

    返回文章
    返回