高压下LuThH10的晶体结构和超导性质

邓雨欣 王泽茜 李天缘 王世达 王金华

邓雨欣, 王泽茜, 李天缘, 王世达, 王金华. 高压下LuThH10的晶体结构和超导性质[J]. 高压物理学报, 2025, 39(6): 061101. doi: 10.11858/gywlxb.20240906
引用本文: 邓雨欣, 王泽茜, 李天缘, 王世达, 王金华. 高压下LuThH10的晶体结构和超导性质[J]. 高压物理学报, 2025, 39(6): 061101. doi: 10.11858/gywlxb.20240906
DENG Yuxin, WANG Zexi, LI Tianyuan, WANG Shida, WANG Jinhua. Crystal Structure and Superconducting Properties of LuThH10 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 061101. doi: 10.11858/gywlxb.20240906
Citation: DENG Yuxin, WANG Zexi, LI Tianyuan, WANG Shida, WANG Jinhua. Crystal Structure and Superconducting Properties of LuThH10 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 061101. doi: 10.11858/gywlxb.20240906

高压下LuThH10的晶体结构和超导性质

doi: 10.11858/gywlxb.20240906
基金项目: 天津市级大学生创新创业训练计划项目(202310066098);吉林大学超硬材料国家重点实验室开放课题(202307)
详细信息
    作者简介:

    邓雨欣(2003-),女,本科,主要从事高压下材料计算与模拟研究. E-mail:dengyuxin211@gmail.com

    通讯作者:

    王金华(1981-),女,博士,副教授,主要从事高压下材料计算与模拟研究. E-mail:wangjinhua0626@126.com

  • 中图分类号: O521.2

Crystal Structure and Superconducting Properties of LuThH10 at High Pressure

  • 摘要: 采用粒子群优化算法和第一性原理计算方法,系统地研究了高压下三元氢化物LuThH10的晶体结构、电子性质和超导性能,发现了LuThH10的热力学稳定的C2/m相和Cmmm相。谱函数和电声耦合计算结果表明:在200 GPa下,LuThH10C2/m相和Cmmm相的超导转变温度分别为65.8和70.7 K;在300 GPa下,C2/m相的超导转变温度为60.0 K。进一步研究表明,氢原子在LuThH10的超导中起关键作用,高频氢原子的振动有助于提高超导转变温度。

     

  • 图  LuThH10体系中的稳定晶体结构

    Figure  1.  Stable crystal structure of the LuThH10 system

    图  LuThH10C2/m相和Cmmm相的能带结构和态密度

    Figure  2.  Energy band and DOS for C2/m and Cmmm phases of LuThH10

    图  高压下LuThH10C2/m相和Cmmm相的声子谱、声子态密度、谱函数和电声耦合常数

    Figure  3.  Phonon spectra, PHDOS, spectral functions and electroacoustic coupling constants for C2/m and Cmmm phases of LuThH10 under high pressures

    表  1  LuThH10C2/m相和Cmmm相在高压下的超导转变温度、声子频率的对数平均值和电声耦合常数

    Table  1.   Superconducting transition temperature, logarithmic average of phonon frequency, electroacoustic coupling constant for C2/m and Cmmm phases of LuThH10 at high pressures

    PhasePressure/GPaTc/K$ {\omega }_{\rm{log}} $/K$ \lambda $
    C2/m20065.8778.7521.248
    Cmmm20070.7837.1011.256
    C2/m30060.0763.2351.191
    下载: 导出CSV
  • [1] 罗会仟. 超导与诺贝尔奖 [J]. 自然杂志, 2017, 39(6): 427–436. doi: 10.3969/j.issn.0253-9608.2017.06.005

    LUO H Q. Nobel Prize in superconductivity research [J]. Chinese Journal of Nature, 2017, 39(6): 427–436. doi: 10.3969/j.issn.0253-9608.2017.06.005
    [2] COOPER L N. Microscopic quantum interference in the theory of superconductivity [J]. Science, 1973, 181(4103): 908–916. doi: 10.1126/science.181.4103.908
    [3] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [4] MCMAHON J M, CEPERLEY D M. High-temperature superconductivity in atomic metallic hydrogen [J]. Physical Review B, 2011, 84(14): 144515. doi: 10.1103/PhysRevB.84.144515
    [5] CUDAZZO P, PROFETA G, SANNA A, et al. Ab initio description of high-temperature superconductivity in dense molecular hydrogen [J]. Physical Review Letters, 2008, 100(25): 257001. doi: 10.1103/PhysRevLett.100.257001
    [6] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [7] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [8] 段德芳, 马艳斌, 邵子霁, 等. 高压下富氢化合物的结构与奇异超导电性 [J]. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102

    DUAN D F, MA Y B, SHAO Z J, et al. Structures and novel superconductivity of hydrogen-rich compounds under high pressures [J]. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466.
    [10] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [11] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
    [12] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [13] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [14] LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995.
    [15] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [16] KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [17] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展 [J]. 物理学报, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189

    SUN Y, LIU H Y, MA Y M. Progress on hydrogen-rich superconductors under high pressure [J]. Acta Physica Sinica, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189
    [18] SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
    [19] ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
    [20] HUO Z H, DUAN D F, JIANG Q W, et al. Cubic H3S stabilized by halogens: high-temperature superconductors at mild pressure [J]. Science China Physics, Mechanics & Astronomy, 2023, 66(11): 118211.
    [21] CHEN W X, MA T C, HUO Z H, et al. High-temperature superconductivity in clathrate thorium-doped hexahydrides A1−xThxH6 (A = La, Ac, and Y) at moderate pressure [J]. Physical Review B, 2024, 109(22): 224505. doi: 10.1103/PhysRevB.109.224505
    [22] LIANG X W, BERGARA A, WEI X D, et al. Prediction of high-Tc superconductivity in ternary lanthanum borohydrides [J]. Physical Review B, 2021, 104(13): 134501. doi: 10.1103/PhysRevB.104.134501
    [23] DI CATALDO S, HEIL C, VON DER LINDEN W, et al. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides [J]. Physical Review B, 2021, 104(2): L020511. doi: 10.1103/PhysRevB.104.L020511
    [24] SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
    [25] SONG X X, HAO X K, WEI X D, et al. Superconductivity above 105 K in nonclathrate ternary lanthanum borohydride below megabar pressure [J]. Journal of the American Chemical Society, 2024, 146(20): 13797–13804. doi: 10.1021/jacs.3c14205
    [26] GAO M, YAN X W, LU Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Physical Review B, 2021, 104(10): L100504. doi: 10.1103/PhysRevB.104.L100504
    [27] DU M Y, SONG H, ZHANG Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022: 9784309.
    [28] LIU P Y, ZHAO W D, LIU Z, et al. High-temperature superconductivities and crucial factors influencing the stability of LaThH12 under moderate pressures [J]. Physical Chemistry Chemical Physics, 2024, 26(10): 8237–8246. doi: 10.1039/D3CP05408J
    [29] SONG P, DURAJSKI A P, HOU Z F, et al. (La, Th)H10: potential high-Tc (242 K) superconductors stabilized thermodynamically below 200 GPa [J]. The Journal of Physical Chemistry C, 2024, 128(6): 2656–2665. doi: 10.1021/acs.jpcc.3c07213
    [30] SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
    [31] YAO S C, WANG C Z, LIU S Y, et al. Formation mechanism of chemically precompressed hydrogen clathrates in metal superhydrides [J]. Inorganic Chemistry, 2021, 60(17): 12934–12940. doi: 10.1021/acs.inorgchem.1c01340
    [32] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [33] WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
    [34] GAO B, GAO P Y, LU S H, et al. Interface structure prediction via CALYPSO method [J]. Science Bulletin, 2019, 64(5): 301–309. doi: 10.1016/j.scib.2019.02.009
    [35] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [36] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
    [37] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [38] PERDEW J P, WANG Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas [J]. Physical Review B, 1992, 46(20): 12947–12954. doi: 10.1103/PhysRevB.46.12947
    [39] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [40] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115–13118. doi: 10.1103/PhysRevB.48.13115
    [41] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
    [42] 郭鉴宁, 王煜龙, 朱程程, 等. 高压下二元富氢超导体的实验研究进展 [J]. 高压物理学报, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742

    GUO J N, WANG Y L, ZHU C C, et al. Progress of experimental research on binary hydride superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742
    [43] ALLEN P B, DYNES R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Physical Review B, 1975, 12(3): 905–922. doi: 10.1103/PhysRevB.12.905
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  45
  • PDF下载量:  19
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2024-11-07
  • 录用日期:  2024-11-13
  • 网络出版日期:  2025-05-28
  • 刊出日期:  2025-06-05

目录

    /

    返回文章
    返回