Crystal Structure and Superconducting Properties of LuThH10 at High Pressure
-
摘要: 采用粒子群优化算法和第一性原理计算方法,系统地研究了高压下三元氢化物LuThH10的晶体结构、电子性质和超导性能,发现了LuThH10的热力学稳定的C2/m相和Cmmm相。谱函数和电声耦合计算结果表明:在200 GPa下,LuThH10的C2/m相和Cmmm相的超导转变温度分别为65.8和70.7 K;在300 GPa下,C2/m相的超导转变温度为60.0 K。进一步研究表明,氢原子在LuThH10的超导中起关键作用,高频氢原子的振动有助于提高超导转变温度。Abstract: Using particle swarm optimization and first-principles calculations, the crystal structures, electronic properties, and superconducting behavior of the ternary hydride LuThH10 under high pressure are investigated. Our study uncovers two thermodynamically stable phases with space group symmetries of C2/m and Cmmm. Spectral function and electron-phonon coupling calculations show superconducting transition temperatures (Tc) of 65.8 K and 70.7 K under 200 GPa for the C2/m and Cmmm phases of LuThH10, respectively. At 300 GPa, the Tc of the C2/m phase reaches 60.0 K. Further analysis reveals that the H atoms make critical contributions to the superconducting properties of LuThH10, by which the high-frequency vibration of the H atoms enhances Tc.
-
Key words:
- hydride /
- high pressure /
- first principles /
- superconductivity
-
表 1 LuThH10的C2/m相和Cmmm相在高压下的超导转变温度、声子频率的对数平均值和电声耦合常数
Table 1. Superconducting transition temperature, logarithmic average of phonon frequency, electroacoustic coupling constant for C2/m and Cmmm phases of LuThH10 at high pressures
Phase Pressure/GPa Tc/K $ {\omega }_{\rm{log}} $/K $ \lambda $ C2/m 200 65.8 778.752 1.248 Cmmm 200 70.7 837.101 1.256 C2/m 300 60.0 763.235 1.191 -
[1] 罗会仟. 超导与诺贝尔奖 [J]. 自然杂志, 2017, 39(6): 427–436. doi: 10.3969/j.issn.0253-9608.2017.06.005LUO H Q. Nobel Prize in superconductivity research [J]. Chinese Journal of Nature, 2017, 39(6): 427–436. doi: 10.3969/j.issn.0253-9608.2017.06.005 [2] COOPER L N. Microscopic quantum interference in the theory of superconductivity [J]. Science, 1973, 181(4103): 908–916. doi: 10.1126/science.181.4103.908 [3] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590 [4] MCMAHON J M, CEPERLEY D M. High-temperature superconductivity in atomic metallic hydrogen [J]. Physical Review B, 2011, 84(14): 144515. doi: 10.1103/PhysRevB.84.144515 [5] CUDAZZO P, PROFETA G, SANNA A, et al. Ab initio description of high-temperature superconductivity in dense molecular hydrogen [J]. Physical Review Letters, 2008, 100(25): 257001. doi: 10.1103/PhysRevLett.100.257001 [6] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579 [7] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002 [8] 段德芳, 马艳斌, 邵子霁, 等. 高压下富氢化合物的结构与奇异超导电性 [J]. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102DUAN D F, MA Y B, SHAO Z J, et al. Structures and novel superconductivity of hydrogen-rich compounds under high pressures [J]. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102 [9] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. [10] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001 [11] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968 [12] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964 [13] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001 [14] LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. [15] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8 [16] KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2 [17] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展 [J]. 物理学报, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189SUN Y, LIU H Y, MA Y M. Progress on hydrogen-rich superconductors under high pressure [J]. Acta Physica Sinica, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189 [18] SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001 [19] ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001 [20] HUO Z H, DUAN D F, JIANG Q W, et al. Cubic H3S stabilized by halogens: high-temperature superconductors at mild pressure [J]. Science China Physics, Mechanics & Astronomy, 2023, 66(11): 118211. [21] CHEN W X, MA T C, HUO Z H, et al. High-temperature superconductivity in clathrate thorium-doped hexahydrides A1−xThxH6 (A = La, Ac, and Y) at moderate pressure [J]. Physical Review B, 2024, 109(22): 224505. doi: 10.1103/PhysRevB.109.224505 [22] LIANG X W, BERGARA A, WEI X D, et al. Prediction of high-Tc superconductivity in ternary lanthanum borohydrides [J]. Physical Review B, 2021, 104(13): 134501. doi: 10.1103/PhysRevB.104.134501 [23] DI CATALDO S, HEIL C, VON DER LINDEN W, et al. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides [J]. Physical Review B, 2021, 104(2): L020511. doi: 10.1103/PhysRevB.104.L020511 [24] SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001 [25] SONG X X, HAO X K, WEI X D, et al. Superconductivity above 105 K in nonclathrate ternary lanthanum borohydride below megabar pressure [J]. Journal of the American Chemical Society, 2024, 146(20): 13797–13804. doi: 10.1021/jacs.3c14205 [26] GAO M, YAN X W, LU Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Physical Review B, 2021, 104(10): L100504. doi: 10.1103/PhysRevB.104.L100504 [27] DU M Y, SONG H, ZHANG Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022: 9784309. [28] LIU P Y, ZHAO W D, LIU Z, et al. High-temperature superconductivities and crucial factors influencing the stability of LaThH12 under moderate pressures [J]. Physical Chemistry Chemical Physics, 2024, 26(10): 8237–8246. doi: 10.1039/D3CP05408J [29] SONG P, DURAJSKI A P, HOU Z F, et al. (La, Th)H10: potential high-Tc (242 K) superconductors stabilized thermodynamically below 200 GPa [J]. The Journal of Physical Chemistry C, 2024, 128(6): 2656–2665. doi: 10.1021/acs.jpcc.3c07213 [30] SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005 [31] YAO S C, WANG C Z, LIU S Y, et al. Formation mechanism of chemically precompressed hydrogen clathrates in metal superhydrides [J]. Inorganic Chemistry, 2021, 60(17): 12934–12940. doi: 10.1021/acs.inorgchem.1c01340 [32] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116 [33] WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008 [34] GAO B, GAO P Y, LU S H, et al. Interface structure prediction via CALYPSO method [J]. Science Bulletin, 2019, 64(5): 301–309. doi: 10.1016/j.scib.2019.02.009 [35] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169 [36] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864 [37] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953 [38] PERDEW J P, WANG Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas [J]. Physical Review B, 1992, 46(20): 12947–12954. doi: 10.1103/PhysRevB.46.12947 [39] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865 [40] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115–13118. doi: 10.1103/PhysRevB.48.13115 [41] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502 [42] 郭鉴宁, 王煜龙, 朱程程, 等. 高压下二元富氢超导体的实验研究进展 [J]. 高压物理学报, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742GUO J N, WANG Y L, ZHU C C, et al. Progress of experimental research on binary hydride superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742 [43] ALLEN P B, DYNES R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Physical Review B, 1975, 12(3): 905–922. doi: 10.1103/PhysRevB.12.905 -