Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading
-
摘要: 岩体在外部荷载冲击作用下会产生不同频率的信号。首先,通过自制探头的光纤监测系统监测现场岩体受到瞬时冲击荷载前后的应力波信号,并采用鲁棒性局部均值分解(robust local mean decomposition,RLMD)方法,结合快速傅里叶变换对实验得到的监测信号进行时频分析;然后,通过LS-DYNA软件模拟冲击荷载施加于岩体并产生应力波的过程,并将模拟应力波频率与实验监测应力波频率进行对比;最后,分析了弹性模量和密度发生改变时模拟应力波频率的变化。结果表明:在现场施加冲击荷载后,现场监测所得信号经过频谱分解会出现频率为
1500 ~2300 Hz的多个极大振幅特征信号,与模拟应力波时频分析中获得的2203 Hz的主频率信号基本符合;模拟应力波频率与一维平面应力波推导的频率呈相反的变化趋势。Abstract: Rock body will generate signals with different frequencies under the impact of external loads. This paper monitors the stress wave signals before and after the rock body is subjected to transient impact loads through the fiber-optic monitoring system with homemade probes, and conducts time-frequency analysis of the experimental monitoring signals using the robust local mean decomposition (RLMD) method combined with the fast Fourier transform (FFT). After that, LS-DYNA software is used to simulate the impact load applied to the rock body and generate the stress wave, and the frequency of the stress wave is verified against the frequency of the experimentally monitored stress wave. Finally, the relationship between the simulated stress wave frequency change under the change of elastic modulus and density is analyzed. Results show that the signals monitored in the field will appear as multiple signals with great amplitude after spectral decomposition of1500 –2300 Hz after the impact is applied in the field, which is consistent with the simulation result of the time-frequency analysis of the stress wave in the main frequency signal of2203 Hz, and the opposite trend to the frequency change indicated by the one-dimensional planar stress wave derivation, which will be the next step of the research issue. -
ρ0/(kg·m−3) G/GPa A n B $ {Q}_{0} $ $ {{{{n}}}}_{{{\rm{f}}}} $ $ {A}_{\mathrm{f}} $ $ {g}_{{\rm{c}}}^{{*}} $ 2 660 15.4 1.65 0.56 0.010 5 0.68 0.62 1.59 0.78 $ {g}_{\mathrm{t}}^{*} $ B0 B1 T1/GPa T2/GPa N $ \beta_{\rm{c}} $ $ {\beta }_{\mathrm{t}} $ γ 0.7 0.9 0.9 45.4 0 4 0.032 0.025 0 D1 D2 A1/GPa A2/GPa A3/GPa $ {f}_{\rm{t}}^{{*}} $ $ {f}_{\rm{s}}^{{*}} $ $ \alpha_0 $ $ {p}_{\mathrm{e}\mathrm{l}} $/MPa 0.037 1 45.4 40.9 4.2 0.1 0.18 1.078 16 $ {p}_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}} $/GPa $ {\dot{\varepsilon }}^{\mathrm{t}} $/ms−1 $ {\dot{\varepsilon }}^{\mathrm{c}} $/ms−1 $ {\dot{\varepsilon }}_{0}^{\mathrm{c}} $/ms−1 $ {\dot{\varepsilon }}_{0}^{\mathrm{t}} $/ms−1 $ {\varepsilon }_{\mathrm{p}}^{\mathrm{m}} $ $ \xi $ $ {f}_{\mathrm{c}} $/MPa 0.6 3×1022 3×1022 3×10−8 3×10−9 0.01 0.44 48 表 2 信号特征比较
Table 2. Comparison of signal characteristics
Signal RMS frequency/Hz 1 800–2 500 Hz
energy percentage/%Shock factor Analog signal 2 473.01 33.39 55.91 Shock signal 1 2 190.45 31.76 107.03 Shock signal 2 2 262.70 26.53 125.57 Noise signal 2 239.34 16.87 9.92 Human voice signal 1 979.62 12.97 7.17 Mechanical signal 1 080.73 3.63 19.24 -
[1] 王世鸣, 白云帆, 王嘉琪, 等. 应力波斜入射下砂岩层裂破坏的试验研究 [J]. 振动与冲击, 2024, 43(14): 201–210.WANG S M, BAI Y F, WANG J Q, et al. Experimental study on the spalling failure of sandstone under the oblique incidence of stress waves [J]. Journal of Vibration and Shock, 2024, 43(14): 201–210. [2] 宁建国, 李壮, 王俊, 等. 动态拉应力波作用下锚固体力学响应试验研究 [J]. 采矿与安全工程学报, 2022, 39(4): 731–740.NING J G, LI Z, WANG J, et al. Experimental study on mechanical response of anchored body under dynamic tensile stress wave [J]. Journal of Mining & Safety Engineering, 2022, 39(4): 731–740. [3] 刘啸, 华心祝, 黄志国, 等. 应力波作用下含大型结构面岩体垮塌动力失稳机制 [J]. 岩石力学与工程学报, 2021, 40(10): 2003–2014.LIU X, HUA X Z, HUANG Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2003–2014. [4] 伍武星, 宫凤强, 高明忠, 等. 冲击扰动下断面形状对深部隧洞岩爆的影响研究 [J]. 岩石力学与工程学报, 2024, 43(9): 2257–2272.WU W X, GONG F Q, GAO M Z, et al. Study on the influence of cross-section shape on rockburst of deep tunnels under impact disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(9): 2257–2272. [5] 朱权洁, 姜福兴, 于正兴, 等. 爆破震动与岩石破裂微震信号能量分布特征研究 [J]. 岩石力学与工程学报, 2012, 31(4): 723–730. doi: 10.3969/j.issn.1000-6915.2012.04.011ZHU Q J, JIANG F X, YU Z X, et al. Study on energy distribution characters about blasting vibration and rock fracture microseismic signal [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 723–730. doi: 10.3969/j.issn.1000-6915.2012.04.011 [6] 郝建, 刘河清, 刘建康, 等. 基于振动信号的岩石单轴抗压强度钻进预测实验研究 [J]. 岩石力学与工程学报, 2024, 43(6): 1406–1424.HAO J, LIU H Q, LIU J K, et al. Experimental study of rock uniaxial compressive strength prediction with drilling based on vibration signals [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1406–1424. [7] MA B L, ZHANG K, XIAO F Y, et al. Experimental and numerical studies on the shear mechanical behavior of rock joints under normal vibration loads [J]. Computers and Geotechnics, 2024, 165: 105892. doi: 10.1016/j.compgeo.2023.105892 [8] KUMAR C V, VARDHAN H, MURTHY C S N, et al. Estimating rock properties using sound signal dominant frequencies during diamond core drilling operations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 850–859. doi: 10.1016/j.jrmge.2019.01.001 [9] 张艳博, 王博, 梁鹏, 等. 大理岩单轴压缩破坏次声波特征的加载速率效应研究 [J]. 煤炭学报, 2024, 49(Suppl 2): 821−831. doi: 10.13225/j.cnki.jccs.2023.1440ZHANG Y B, WANG B, LIANG P, et al. Loading rate effects on infrasound characterization of uniaxial compression damage in marble [J]. Journal of China Coal Society, 2024, 49(Suppl 2): 821−831. doi: 10.13225/j.cnki.jccs.2023.1440 [10] 刘刚, 张家林, 刘闯, 等. 钻头钻进不同介质时的振动信号特征识别研究 [J]. 振动与冲击, 2017, 36(8): 71–78, 104.LIU G, ZHANG J L, LIU C, et al. An identification method of vibration signal features when bit drills different mediums [J]. Journal of Vibration and Shock, 2017, 36(8): 71–78, 104. [11] 王盟, 翁顺, 余兴胜, 等. 基于时变模态振型小波变换的结构损伤识别方法 [J]. 振动与冲击, 2021, 40(16): 10–19.WANG M, WENG S, YU X S, et al. Structural damage identification based on time-varying modal mode shape of wavelet transformation [J]. Journal of Vibration and Shock, 2021, 40(16): 10–19. [12] 朱振飞, 陈国庆, 肖宏跃, 等. 基于声发射多参量分析的岩桥裂纹扩展研究 [J]. 岩石力学与工程学报, 2018, 37(4): 909–918.ZHU Z F, CHEN G Q, XIAO H Y, et al. Study on crack propagation of rock bridge based on multi parameters analysis of acoustic emission [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 909–918. [13] 付荣, 傅荣华, 付安生. 基于快速傅里叶变换的地震波加速度构成及其幅频特性研究 [J]. 地震学报, 2014, 36(3): 417–424. doi: 10.3969/j.issn.0253-3782.2014.03.007FU R, FU R H, FU A S. Composition and amplitude-frequency characteristics of ground motion acceleration based on fast Fourier transform analysis [J]. Acta Seismologica Sinica, 2014, 36(3): 417–424. doi: 10.3969/j.issn.0253-3782.2014.03.007 [14] 徐杨杨, 孙建国, 商耀达. 一种利用Nyström离散与FFT快速褶积的散射地震波并行计算方法 [J]. 地球物理学报, 2021, 64(8): 2877–2887. doi: 10.6038/cjg2021O0391XU Y Y, SUN J G, SHANG Y D. A parallel computation method for scattered seismic waves using NystrÖm discretization and FFT fast convolution [J]. Chinese Journal of Geophysics, 2021, 64(8): 2877–2887. doi: 10.6038/cjg2021O0391 [15] 颜少廷, 周玉国, 任艳波, 等. 基于RLMD和Kmeans++的轴承故障诊断方法 [J]. 机械传动, 2021, 45(2): 163–170.YAN S T, ZHOU Y G, REN Y B, et al. Bearing fault diagnosis method based on RLMD and Kmeans++ [J]. Journal of Mechanical Transmission, 2021, 45(2): 163–170. [16] 张亢. 局部均值分解方法及其在旋转机械故障诊断中的应用研究 [D]. 长沙: 湖南大学, 2012.ZHANG K. Research on local mean decomposition method and its application to rotating machinery fault diagnosis [D]. Changsha: Hunan University, 2012. [17] SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5): 443–454. doi: 10.1098/rsif.2005.0058 [18] 郑菲. 次声波源产生的机理及有限元模拟 [D]. 成都: 成都理工大学, 2015.ZHENG F. The mechanism of infrasound source and finite element simulation [D]. Chengdu: Chengdu University of Technology, 2015. [19] 赵久彬, 刘元雪, 柏准, 等. 土体中岩石破坏次声波的三维多测点振速矢量直线汇聚声源定位方法 [J]振动与冲击, 2021, 40(14): 144–152.ZHAO J B, LIU Y X, BAI Z, et al. Sound source location method with three-dimensional multi-point measurement and particle velocity-vector linear convergence approach for infrasound generated by rock failure in soil [J]. Journal of Vibration and Shock, 2021, 40(14): 144–152. [20] RIEDEL W, KAWAI N, KONDO K. Numerical assessment for impact strength measurements in concrete materials [J]. International Journal of Impact Engineering, 2007, 36(2): 283–293. [21] 李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学, 2016.LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology, 2016. [22] 李洪超, 刘殿书, 赵磊, 等. 大理岩RHT模型参数确定研究 [J]. 北京理工大学学报, 2017, 37(8): 801–806.LI H C, LIU D S, ZHAO L, et al. Study on parameters determination of marble RHT model [J]. Transactions of Beijing Institute of Technology, 2017, 37(8): 801–806. -

下载: