冲击荷载下岩体应力波振动信号频率特征分析

冯佳兴 袁利伟 彭纪 陈明辉 陈迪 起卓

冯佳兴, 袁利伟, 彭纪, 陈明辉, 陈迪, 起卓. 冲击荷载下岩体应力波振动信号频率特征分析[J]. 高压物理学报, 2025, 39(5): 054202. doi: 10.11858/gywlxb.20240897
引用本文: 冯佳兴, 袁利伟, 彭纪, 陈明辉, 陈迪, 起卓. 冲击荷载下岩体应力波振动信号频率特征分析[J]. 高压物理学报, 2025, 39(5): 054202. doi: 10.11858/gywlxb.20240897
FENG Jiaxing, YUAN Liwei, PENG Ji, CHEN Minghui, CHEN Di, QI Zhuo. Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054202. doi: 10.11858/gywlxb.20240897
Citation: FENG Jiaxing, YUAN Liwei, PENG Ji, CHEN Minghui, CHEN Di, QI Zhuo. Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054202. doi: 10.11858/gywlxb.20240897

冲击荷载下岩体应力波振动信号频率特征分析

doi: 10.11858/gywlxb.20240897
基金项目: 国家自然科学基金(52364020)
详细信息
    作者简介:

    冯佳兴(1999-),男,硕士研究生,主要从事安全监测研究. E-mail:821866927@qq.com

    通讯作者:

    袁利伟(1978-),男,博士,教授,主要从事安全科学理论技术、矿山安全技术、灾害风险管控与预警预报研究. E-mail:86593592@qq.com

  • 中图分类号: O381; O521.2; TD235

Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading

  • 摘要: 岩体在外部荷载冲击作用下会产生不同频率的信号。首先,通过自制探头的光纤监测系统监测现场岩体受到瞬时冲击荷载前后的应力波信号,并采用鲁棒性局部均值分解(robust local mean decomposition,RLMD)方法,结合快速傅里叶变换对实验得到的监测信号进行时频分析;然后,通过LS-DYNA软件模拟冲击荷载施加于岩体并产生应力波的过程,并将模拟应力波频率与实验监测应力波频率进行对比;最后,分析了弹性模量和密度发生改变时模拟应力波频率的变化。结果表明:在现场施加冲击荷载后,现场监测所得信号经过频谱分解会出现频率为15002300 Hz的多个极大振幅特征信号,与模拟应力波时频分析中获得的2203 Hz的主频率信号基本符合;模拟应力波频率与一维平面应力波推导的频率呈相反的变化趋势。

     

  • 图  监测设备探头内部以及监测系统

    Figure  1.  Monitoring equipment probe and the monitoring system

    图  实验方法和测点布置

    Figure  2.  Experimental method and layout of measurement points

    图  现场实验照片

    Figure  3.  Photos of field experiment

    图  噪声信号

    Figure  4.  Noise signals

    图  施加载荷后的监测信号

    Figure  5.  Monitoring signals after loading

    图  RLMD部分流程示意图

    Figure  6.  Schematic diagram of the RLMD process

    图  噪声信号频率

    Figure  7.  Noise signals frequency

    图  施加载荷后的监测信号频率

    Figure  8.  Monitoring signals frequency after loading

    图  数值模拟建模

    Figure  9.  Modeling of numerical simulation

    图  10  数值模拟得到的应力变化云图

    Figure  10.  Stress variation nephograms obtained from numerical simulation

    图  11  数值模拟得到的应力波及其频谱分析

    Figure  11.  Numerical stress wave and spectral analysis

    图  12  模拟应力波频率与改变物理参数的关系

    Figure  12.  Relationship of numerical stress wave frequency versus changing physical parameters

    表  1  岩体的RHT模型参数[22]

    Table  1.   Parameters of RHT model of rock[22]

    ρ0/(kg·m−3) G/GPa A n B $ {Q}_{0} $ $ {{{{n}}}}_{{{\rm{f}}}} $ $ {A}_{\mathrm{f}} $ $ {g}_{{\rm{c}}}^{{*}} $
    2 660 15.4 1.65 0.56 0.010 5 0.68 0.62 1.59 0.78
    $ {g}_{\mathrm{t}}^{*} $ B0 B1 T1/GPa T2/GPa N $ \beta_{\rm{c}} $ $ {\beta }_{\mathrm{t}} $ γ
    0.7 0.9 0.9 45.4 0 4 0.032 0.025 0
    D1 D2 A1/GPa A2/GPa A3/GPa $ {f}_{\rm{t}}^{{*}} $ $ {f}_{\rm{s}}^{{*}} $ $ \alpha_0 $ $ {p}_{\mathrm{e}\mathrm{l}} $/MPa
    0.037 1 45.4 40.9 4.2 0.1 0.18 1.078 16
    $ {p}_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}} $/GPa $ {\dot{\varepsilon }}^{\mathrm{t}} $/ms−1 $ {\dot{\varepsilon }}^{\mathrm{c}} $/ms−1 $ {\dot{\varepsilon }}_{0}^{\mathrm{c}} $/ms−1 $ {\dot{\varepsilon }}_{0}^{\mathrm{t}} $/ms−1 $ {\varepsilon }_{\mathrm{p}}^{\mathrm{m}} $ $ \xi $ $ {f}_{\mathrm{c}} $/MPa
    0.6 3×1022 3×1022 3×10−8 3×10−9 0.01 0.44 48
    下载: 导出CSV

    表  2  信号特征比较

    Table  2.   Comparison of signal characteristics

    SignalRMS frequency/Hz1 800–2 500 Hz
    energy percentage/%
    Shock factor
    Analog signal2 473.0133.3955.91
    Shock signal 12 190.4531.76107.03
    Shock signal 22 262.7026.53125.57
    Noise signal2 239.3416.879.92
    Human voice signal1 979.6212.977.17
    Mechanical signal1 080.733.6319.24
    下载: 导出CSV
  • [1] 王世鸣, 白云帆, 王嘉琪, 等. 应力波斜入射下砂岩层裂破坏的试验研究 [J]. 振动与冲击, 2024, 43(14): 201–210.

    WANG S M, BAI Y F, WANG J Q, et al. Experimental study on the spalling failure of sandstone under the oblique incidence of stress waves [J]. Journal of Vibration and Shock, 2024, 43(14): 201–210.
    [2] 宁建国, 李壮, 王俊, 等. 动态拉应力波作用下锚固体力学响应试验研究 [J]. 采矿与安全工程学报, 2022, 39(4): 731–740.

    NING J G, LI Z, WANG J, et al. Experimental study on mechanical response of anchored body under dynamic tensile stress wave [J]. Journal of Mining & Safety Engineering, 2022, 39(4): 731–740.
    [3] 刘啸, 华心祝, 黄志国, 等. 应力波作用下含大型结构面岩体垮塌动力失稳机制 [J]. 岩石力学与工程学报, 2021, 40(10): 2003–2014.

    LIU X, HUA X Z, HUANG Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2003–2014.
    [4] 伍武星, 宫凤强, 高明忠, 等. 冲击扰动下断面形状对深部隧洞岩爆的影响研究 [J]. 岩石力学与工程学报, 2024, 43(9): 2257–2272.

    WU W X, GONG F Q, GAO M Z, et al. Study on the influence of cross-section shape on rockburst of deep tunnels under impact disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(9): 2257–2272.
    [5] 朱权洁, 姜福兴, 于正兴, 等. 爆破震动与岩石破裂微震信号能量分布特征研究 [J]. 岩石力学与工程学报, 2012, 31(4): 723–730. doi: 10.3969/j.issn.1000-6915.2012.04.011

    ZHU Q J, JIANG F X, YU Z X, et al. Study on energy distribution characters about blasting vibration and rock fracture microseismic signal [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 723–730. doi: 10.3969/j.issn.1000-6915.2012.04.011
    [6] 郝建, 刘河清, 刘建康, 等. 基于振动信号的岩石单轴抗压强度钻进预测实验研究 [J]. 岩石力学与工程学报, 2024, 43(6): 1406–1424.

    HAO J, LIU H Q, LIU J K, et al. Experimental study of rock uniaxial compressive strength prediction with drilling based on vibration signals [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1406–1424.
    [7] MA B L, ZHANG K, XIAO F Y, et al. Experimental and numerical studies on the shear mechanical behavior of rock joints under normal vibration loads [J]. Computers and Geotechnics, 2024, 165: 105892. doi: 10.1016/j.compgeo.2023.105892
    [8] KUMAR C V, VARDHAN H, MURTHY C S N, et al. Estimating rock properties using sound signal dominant frequencies during diamond core drilling operations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 850–859. doi: 10.1016/j.jrmge.2019.01.001
    [9] 张艳博, 王博, 梁鹏, 等. 大理岩单轴压缩破坏次声波特征的加载速率效应研究 [J]. 煤炭学报, 2024, 49(Suppl 2): 821−831. doi: 10.13225/j.cnki.jccs.2023.1440

    ZHANG Y B, WANG B, LIANG P, et al. Loading rate effects on infrasound characterization of uniaxial compression damage in marble [J]. Journal of China Coal Society, 2024, 49(Suppl 2): 821−831. doi: 10.13225/j.cnki.jccs.2023.1440
    [10] 刘刚, 张家林, 刘闯, 等. 钻头钻进不同介质时的振动信号特征识别研究 [J]. 振动与冲击, 2017, 36(8): 71–78, 104.

    LIU G, ZHANG J L, LIU C, et al. An identification method of vibration signal features when bit drills different mediums [J]. Journal of Vibration and Shock, 2017, 36(8): 71–78, 104.
    [11] 王盟, 翁顺, 余兴胜, 等. 基于时变模态振型小波变换的结构损伤识别方法 [J]. 振动与冲击, 2021, 40(16): 10–19.

    WANG M, WENG S, YU X S, et al. Structural damage identification based on time-varying modal mode shape of wavelet transformation [J]. Journal of Vibration and Shock, 2021, 40(16): 10–19.
    [12] 朱振飞, 陈国庆, 肖宏跃, 等. 基于声发射多参量分析的岩桥裂纹扩展研究 [J]. 岩石力学与工程学报, 2018, 37(4): 909–918.

    ZHU Z F, CHEN G Q, XIAO H Y, et al. Study on crack propagation of rock bridge based on multi parameters analysis of acoustic emission [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 909–918.
    [13] 付荣, 傅荣华, 付安生. 基于快速傅里叶变换的地震波加速度构成及其幅频特性研究 [J]. 地震学报, 2014, 36(3): 417–424. doi: 10.3969/j.issn.0253-3782.2014.03.007

    FU R, FU R H, FU A S. Composition and amplitude-frequency characteristics of ground motion acceleration based on fast Fourier transform analysis [J]. Acta Seismologica Sinica, 2014, 36(3): 417–424. doi: 10.3969/j.issn.0253-3782.2014.03.007
    [14] 徐杨杨, 孙建国, 商耀达. 一种利用Nyström离散与FFT快速褶积的散射地震波并行计算方法 [J]. 地球物理学报, 2021, 64(8): 2877–2887. doi: 10.6038/cjg2021O0391

    XU Y Y, SUN J G, SHANG Y D. A parallel computation method for scattered seismic waves using NystrÖm discretization and FFT fast convolution [J]. Chinese Journal of Geophysics, 2021, 64(8): 2877–2887. doi: 10.6038/cjg2021O0391
    [15] 颜少廷, 周玉国, 任艳波, 等. 基于RLMD和Kmeans++的轴承故障诊断方法 [J]. 机械传动, 2021, 45(2): 163–170.

    YAN S T, ZHOU Y G, REN Y B, et al. Bearing fault diagnosis method based on RLMD and Kmeans++ [J]. Journal of Mechanical Transmission, 2021, 45(2): 163–170.
    [16] 张亢. 局部均值分解方法及其在旋转机械故障诊断中的应用研究 [D]. 长沙: 湖南大学, 2012.

    ZHANG K. Research on local mean decomposition method and its application to rotating machinery fault diagnosis [D]. Changsha: Hunan University, 2012.
    [17] SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5): 443–454. doi: 10.1098/rsif.2005.0058
    [18] 郑菲. 次声波源产生的机理及有限元模拟 [D]. 成都: 成都理工大学, 2015.

    ZHENG F. The mechanism of infrasound source and finite element simulation [D]. Chengdu: Chengdu University of Technology, 2015.
    [19] 赵久彬, 刘元雪, 柏准, 等. 土体中岩石破坏次声波的三维多测点振速矢量直线汇聚声源定位方法 [J]振动与冲击, 2021, 40(14): 144–152.

    ZHAO J B, LIU Y X, BAI Z, et al. Sound source location method with three-dimensional multi-point measurement and particle velocity-vector linear convergence approach for infrasound generated by rock failure in soil [J]. Journal of Vibration and Shock, 2021, 40(14): 144–152.
    [20] RIEDEL W, KAWAI N, KONDO K. Numerical assessment for impact strength measurements in concrete materials [J]. International Journal of Impact Engineering, 2007, 36(2): 283–293.
    [21] 李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学, 2016.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology, 2016.
    [22] 李洪超, 刘殿书, 赵磊, 等. 大理岩RHT模型参数确定研究 [J]. 北京理工大学学报, 2017, 37(8): 801–806.

    LI H C, LIU D S, ZHAO L, et al. Study on parameters determination of marble RHT model [J]. Transactions of Beijing Institute of Technology, 2017, 37(8): 801–806.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  93
  • PDF下载量:  28
出版历程
  • 收稿日期:  2024-09-28
  • 修回日期:  2024-10-28
  • 录用日期:  2025-02-14
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回