爆炸破片冲击下碳纤维复合材料的吸能性能和失效机制数值模拟

周志鹏 曹辉 付琼 王新文 王志勇

周志鹏, 曹辉, 付琼, 王新文, 王志勇. 爆炸破片冲击下碳纤维复合材料的吸能性能和失效机制数值模拟[J]. 高压物理学报, 2025, 39(7): 074204. doi: 10.11858/gywlxb.20240882
引用本文: 周志鹏, 曹辉, 付琼, 王新文, 王志勇. 爆炸破片冲击下碳纤维复合材料的吸能性能和失效机制数值模拟[J]. 高压物理学报, 2025, 39(7): 074204. doi: 10.11858/gywlxb.20240882
ZHOU Zhipeng, CAO Hui, FU Qiong, WANG Xinwen, WANG Zhiyong. Numerical Simulation of Energy Absorption Performance and Failure Mechanism of CFRP Composites under Fragment Impact after Explosion[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074204. doi: 10.11858/gywlxb.20240882
Citation: ZHOU Zhipeng, CAO Hui, FU Qiong, WANG Xinwen, WANG Zhiyong. Numerical Simulation of Energy Absorption Performance and Failure Mechanism of CFRP Composites under Fragment Impact after Explosion[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 074204. doi: 10.11858/gywlxb.20240882

爆炸破片冲击下碳纤维复合材料的吸能性能和失效机制数值模拟

doi: 10.11858/gywlxb.20240882
基金项目: 国家自然科学基金(12272257);山西省基础研究计划资助项目(202403021222493)
详细信息
    作者简介:

    周志鹏(1993-),男,博士,讲师,主要从事爆炸冲击与先进防护研究. E-mail:zzp_wsry@163.com

    通讯作者:

    王新文(1973-),男,硕士,副教授,主要从事爆炸防控技术研究. E-mail:wxwIs@sina.com

    王志勇(1982-),男,博士,教授,主要从事冲击动力学研究. E-mail:wangzhiyong@tyut.edu.cn

  • 中图分类号: O521.9; TB332

Numerical Simulation of Energy Absorption Performance and Failure Mechanism of CFRP Composites under Fragment Impact after Explosion

  • 摘要: 碳纤维增强聚合物(carbon fibre-reinforced polymer, CFRP)复合材料在破片冲击作用下的复杂侵彻行为和失效机制尚不明确,这一现状制约了其在防护领域的应用。针对实验手段在获取侵彻历程信息时面临的监测难度大、成本高昂等问题,构建了CFRP复合材料破片冲击有限元分析(finite element analysis, FEA)模型,采用基于应变的三维 Hashin 失效准则,并引入强度的速率依赖性关系。通过与实验结果对比,验证了FEA模型的有效性。模拟结果表明,在不同TNT当量和破片距爆点距离的条件下,破片的初速度和撞击倾角存在显著差异。将破片相对于靶板上不同平面间的倾角分别定义为αβ。固定冲击速度仅改变倾角α时,试样的吸能效果和冲击速度敏感性未表现出明显差异,而改变倾角β时试样的吸能效果和冲击速度敏感性差异显著。当β=0°时,CFRP复合材料在195~392 m/s的速度范围内表现出明显的冲击速度敏感性。当α=0°时,CFRP复合材料在195~392 m/s的冲击速度范围内的冲击速度敏感性随着β的增大而逐渐减弱。可视化的侵彻过程和破坏区域表明,接触面积、接触时间和变形程度是导致CFRP复合材料吸能效果和冲击速度敏感性差异的重要因素。

     

  • 图  几何模型

    Figure  1.  Geometric model

    图  模拟与实验[17]所得速度历程曲线对比

    Figure  2.  Comparison of velocity history curves obtained by simulation and experiment[17]

    图  实验结果[17]与模拟结果的对比(P和N分别表示试样的正面与背面)

    Figure  3.  Comparison between experimental results[17] and simulation results (P and N represent the front and back of the specimen, respectively)

    图  靶板中心区域网格尺寸分别为1.5、2.0和3.0 mm时破片速度-时间曲线

    Figure  4.  Velocity-time curves of fragments when the mesh size in the center area of the target plate is 1.5, 2.0 and 3.0 mm, respectively

    图  中心区域网格尺寸分别为1.5、2.0和3.0 mm时靶板的变形区域和破坏形貌

    Figure  5.  Deformation region and failure morphology of target plates with mesh size of 1.5, 2.0 and 3.0 mm in the central region, respectively

    图  (a) 预制破片群及破片位置标注(由位置1至位置6,破片距离爆点距离增加),(b) 不同位置破片在爆炸载荷作用下的飞行姿态,(c)~(f) 500、1 000、1 500和2 000 g TNT当量下破片群中破片冲击速度随时间的变化曲线(表明位置1至位置6破片的冲击速度分布情况)

    Figure  6.  (a) Prefabricated fragment group and fragment location marking (from position 1 to position 6, the distance between fragment and explosion point increases); (b) the flight attitude of fragments at different locations under explosive loading; (c)−(f) is the curve of the impact velocity of each fragment in the fragment group with the TNT equivalent of 500, 1 000, 1 500 and 2 000 g, respectively, indicating the impact velocity distribution of fragments at positions 1 to 6

    图  破片在y-zx-z平面上与靶板的倾角

    Figure  7.  Inclination angles of fragments with the target plate on y-z and x-z planes

    图  不同倾角下破片的冲击速度-时间曲线

    Figure  8.  Impact velocity-time curves of fragments at different inclination angles

    图  (a)具有不同倾角α的破片的剩余速度-初速度关系,(b)具有不同初速度的破片的剩余速度与倾角α的关系

    Figure  9.  (a) Residual velocity vs. initial velocity for fragments with different inclination α; (b) residual velocity vs. inclination α of fragments with different initial velocities

    图  10  层合板试样在具有392 m/s冲击速度和不同倾角α的破片冲击下的侵彻破坏过程(y-z平面)

    Figure  10.  Penetration process of laminate specimens under the impact of fragments with different angles of α and impact velocity of 392 m/s (in y-z plane)

    图  11  层合板试样在具有392 m/s冲击速度和不同倾角α的破片冲击下的侵彻破坏过程(x-z平面)

    Figure  11.  Penetration process of laminate specimens under the impact of fragments with different angles α and impact velocity of 392 m/s (in x-z plane)

    图  12  层合板在具有392 m/s冲击速度和不同倾角α的破片冲击下背面的破坏形态和变形区域

    Figure  12.  Failure modes and deformation regions of back of laminate specimen under the impact of fragments with impact velocity of 392 m/s and different inclination angles α

    图  13  (a)具有不同倾角β的破片的剩余速度-初速度关系,(b)具有不同初速度的破片的剩余速度-倾角β的关系

    Figure  13.  (a) Residual velocity vs. initial velocity for fragments with different inclinations β;(b) residual velocity vs. inclination β of fragments with different initial velocities

    图  14  层合板试样在具有392 m/s冲击速度和不同倾角β的破片冲击下的侵彻破坏过程(y-z平面)

    Figure  14.  Penetration process of laminate specimens under the impact of fragments with different angles β and impact velocity of 392 m/s (in y-z plane)

    图  15  层合板试样在具有392 m/s冲击速度和不同倾角β的破片冲击下的侵彻破坏过程(x-z平面)

    Figure  15.  Penetration process of laminate specimens under the impact of fragments with different angles β and impact velocity of 392 m/s (in x-z plane)

    图  16  层合板试样S-B-20在具有392 m/s冲击速度和90.0°倾角β的破片冲击下的侵彻破坏过程(y-z平面)

    Figure  16.  Penetration process of laminate specimens under the impact of fragment with impact velocity of 392 m/s and 90.0° inclination angle β (in y-z plane)

    图  17  层合板在具有392 m/s冲击速度和不同倾角β的破片冲击下背面的破坏形态和变形区域

    Figure  17.  Failure modes and deformation regions of back of laminate specimen under the impact of fragment with 392 m/s impact velocity and different inclination angles β

    表  1  CFRP层合板的材料参数[14]

    Table  1.   Material parameters of CFRP laminate[14]

    ρ/(g·cm −3) E11/GPa E22/GPa E33/GPa μ12 μ13 μ23 G12/GPa
    1.681396.6556.6550.01380.01380.4453.346
    G13/GPaG23/GPaF1T/MPaF2T/MPaF3T/MPaF1C/MPaF2C/MPaF3C/MPa
    3.3462.302296164642665127127
    S12/MPaS13/MPaS23/MPaGf1/(kJ·m −2)Gf2/(kJ·m −2)Gf3/(kJ·m −2)
    636363622222
    下载: 导出CSV

    表  2  界面内聚力单元的材料参数[17]

    Table  2.   Material parameters of cohesive elements[17]

    $ t_{\mathrm{n}}^0 $/MPa $ t_{\mathrm{s}}^0 $/MPa $t_{\mathrm{t}}^0 $/MPa $ G_{\text{n}}^{\text{C}} $/(N·mm −1) $ G\mathrm{_s^C} $/(N·mm −1) $G\mathrm{_t^C} $/(N·mm −1) $ \eta $
    50 90 90 0.52 0.92 0.92 1.5
    下载: 导出CSV

    表  3  试样信息和剩余速度结果

    Table  3.   Specimen information and residual velocity results

    Specimens α/(°) β/(°) vI/(m·s−1) vR/(m·s−1)
    S-A-1/S-B-1 0 0 195 −9.13
    S-A-2/S-B-2 0 0 293 74.79
    S-A-3/S-B-3 0 0 350 138.44
    S-A-4/S-B-4 0 0 392 178.14
    S-A-5 15 0 195 −12.46
    S-A-6 15 0 293 61.87
    S-A-7 15 0 350 122.46
    S-A-8 15 0 392 169.24
    S-A-9 30 0 195 −6.42
    S-A-10 30 0 293 60.83
    S-A-11 30 0 350 127.58
    S-A-12 30 0 392 163.38
    S-A-13 45 0 195 −6.75
    S-A-14 45 0 293 72.79
    S-A-15 45 0 350 119.09
    S-A-16 45 0 392 157.46
    S-B-5 0 22.5 195 −11.57
    S-B-6 0 22.5 293 5.18
    S-B-7 0 22.5 350 48.98
    S-B-8 0 22.5 392 91.04
    S-B-9 0 45.0 195 −11.90
    S-B-10 0 45.0 293 −9.70
    S-B-11 0 45.0 350 16.25
    S-B-12 0 45.0 392 33.90
    S-B-13 0 67.5 195 −13.18
    S-B-14 0 67.5 293 −12.56
    S-B-15 0 67.5 350 −0.87
    S-B-16 0 67.5 392 8.13
    S-B-17 0 90.0 195 −9.32
    S-B-18 0 90.0 293 −8.03
    S-B-19 0 90.0 350 −1.54
    S-B-20 0 90.0 392 −0.45
    下载: 导出CSV
  • [1] 廖斌斌, 周建武, 林渊, 等. CFRP层合板低速冲击响应及损伤特性研究 [J]. 高压物理学报, 2019, 33(4): 044202.

    LIAO B B, ZHOU J W, LIN Y, et al. Low-velocity impact behavior and damage characteristics of CFRP laminates [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044202.
    [2] JIN L, ZHANG B L, CHEN F J, et al. Dynamic contribution of CFRP strips to CFRP-strengthened RC shear walls [J]. International Journal of Mechanical Sciences, 2023, 255: 108479. doi: 10.1016/j.ijmecsci.2023.108479
    [3] XIANG X M, XIAO C K, LU G X, et al. Novel interaction effects enhance specific energy absorption in foam-filled CFRP tapered tubes [J]. Composite Structures, 2024, 343: 118288. doi: 10.1016/j.compstruct.2024.118288
    [4] GUO H L, LIAO H H, SU M, et al. Shear strengthening of RC beams with prestressed NSM CFRP: influencing factors and analytical model [J]. Composite Structures, 2024, 342: 118262. doi: 10.1016/j.compstruct.2024.118262
    [5] SERGI C, IERARDO N, SARASINI F, et al. Assessment of ply thickness and aluminum foils interleaving on the impact response of CFRP composites designed for cryogenic pressure vessels [J]. Composite Structures, 2025, 351: 118563. doi: 10.1016/j.compstruct.2024.118563
    [6] ZHANG J Y, XIE J, ZHAO X Z, et al. Influence of void defects on impact properties of CFRP laminates based on multi-scale simulation method [J]. International Journal of Impact Engineering, 2023, 180: 104706. doi: 10.1016/j.ijimpeng.2023.104706
    [7] 袁浩天, 刘钊, 孙文豪, 等. 聚能侵彻体作用下钢-CFRP层合板的防护性能 [J]. 高压物理学报, 2023, 37(2): 024202.

    YUAN H T, LIU Z, SUN W H, et al. Protective performance of steel-CFRP laminates under sharped charge projectile [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202.
    [8] BOCCARDI S, MEOLA C, CARLOMAGNO G M, et al. Effects of interface strength gradation on impact damage mechanisms in polypropylene/woven glass fabric composites [J]. Composites Part B: Engineering, 2016, 90: 179–187. doi: 10.1016/j.compositesb.2015.12.004
    [9] ZHOU J W, LIAO B B, SHI Y Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates [J]. Composites Part B: Engineering, 2019, 161: 300–313. doi: 10.1016/j.compositesb.2018.10.090
    [10] 彭捷, 张伟岐, 田锐, 等. 碳纤维层合板抗球形弹冲击动态响应特性试验研究 [J]. 复合材料科学与工程, 2020(6): 18–24,56.

    PENG J, ZHANG W Q, TIAN R, et al. Experimental study on the dynamic response of carbon fiber laminates impacted by spherical projectile [J]. Composites Science and Engineering, 2020(6): 18–24,56.
    [11] LIU J L, SINGH A K, LEE H P, et al. The response of bio-inspired helicoidal laminates to small projectile impact [J]. International Journal of Impact Engineering, 2020, 142: 103608. doi: 10.1016/j.ijimpeng.2020.103608
    [12] 朱浩, 郭章新, 宋鲁彬, 等. 拉伸载荷下含孔复合材料层合板的力学性能及失效机理 [J]. 高压物理学报, 2017, 31(4): 373–381.

    ZHU H, GUO Z X, SONG L B, et al. Mechanical property and failure mechanism of composite laminates containing a circular hole under tension [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 373–381.
    [13] WANG J R, XIE W H, YI F J, et al. Numerical simulation on fracture mechanisms of CFRP with barely visible impact damage by hail impact [J]. Composite Structures, 2023, 305: 116499. doi: 10.1016/j.compstruct.2022.116499
    [14] XING J, DU C L, HE X, et al. Finite element study on the impact resistance of laminated and textile composites [J]. Polymers, 2019, 11(11): 1798. doi: 10.3390/polym11111798
    [15] XU Z, YANG F, GUAN Z W, et al. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates [J]. Composite Structures, 2016, 154: 69–78. doi: 10.1016/j.compstruct.2016.07.029
    [16] PANKOW M, WAAS A M, YEN C F, et al. Modeling the response, strength and degradation of 3D woven composites subjected to high rate loading [J]. Composite Structures, 2012, 94(5): 1590–1604. doi: 10.1016/j.compstruct.2011.12.010
    [17] DU C L, WANG H F, ZHAO Z Q, et al. A comparison study on the impact failure behavior of laminate and woven composites with consideration of strain rate effect and impact attitude [J]. Thin-Walled Structures, 2021, 164: 107843. doi: 10.1016/j.tws.2021.107843
    [18] JIANG H Y, REN Y R, LIU Z H, et al. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups [J]. Composite Structures, 2019, 214: 463–475. doi: 10.1016/j.compstruct.2019.02.034
    [19] LI K M, NI X P, WU Q Q, et al. Carbon-based fibers: fabrication, characterization and application [J]. Advanced Fiber Materials, 2022, 4(4): 631–682. doi: 10.1007/s42765-022-00134-x
    [20] 邱晓清, 唐柏鉴, 任鹏, 等. 冲击波和破片对超高分子量聚乙烯板联合作用的仿真模拟 [J]. 江苏科技大学学报(自然科学版), 2020, 34(3): 6–13.

    QIU X Q, TANG B J, REN P, et al. Simulation of the damage of UHMWPE plate by the combined action of shock waves and fragments [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(3): 6–13.
    [21] ZHOU Z P, SUN W F, ZHENG N, et al. Experimental and numerical investigation of the energy absorption characteristics of carbon-basalt hybrid fiber reinforced polymer composites under ballistic impact [J]. Composite Structures, 2024, 335: 118000. doi: 10.1016/j.compstruct.2024.118000
    [22] LIU Q, GUO B Q, CHEN P W, et al. Investigating ballistic resistance of CFRP/polyurea composite plates subjected to ballistic impact [J]. Thin-Walled Structures, 2021, 166: 108111. doi: 10.1016/j.tws.2021.108111
    [23] SHISHEVAN F A, AKBULUT H. Low-velocity impact behavior of carbon/basalt fiber-reinforced intra-ply hybrid composites [J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43(1): 225–234. doi: 10.1007/s40995-017-0400-0
    [24] CHEN D D, LUO Q T, MENG M Z, et al. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres [J]. Composites Part B: Engineering, 2019, 176: 107191. doi: 10.1016/j.compositesb.2019.107191
    [25] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE) [J]. Composite Structures, 2015, 133: 191–201. doi: 10.1016/j.compstruct.2015.06.081
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  90
  • PDF下载量:  36
出版历程
  • 收稿日期:  2024-09-02
  • 修回日期:  2024-10-11
  • 录用日期:  2024-10-11
  • 网络出版日期:  2025-07-07
  • 刊出日期:  2025-07-07

目录

    /

    返回文章
    返回