接触爆炸下POZD涂覆钢筋混凝土梁的抗爆性能

薛建锋 章琪月 许红浩 汪维 刘涛 夏韬

薛建锋, 章琪月, 许红浩, 汪维, 刘涛, 夏韬. 接触爆炸下POZD涂覆钢筋混凝土梁的抗爆性能[J]. 高压物理学报, 2025, 39(5): 054203. doi: 10.11858/gywlxb.20240881
引用本文: 薛建锋, 章琪月, 许红浩, 汪维, 刘涛, 夏韬. 接触爆炸下POZD涂覆钢筋混凝土梁的抗爆性能[J]. 高压物理学报, 2025, 39(5): 054203. doi: 10.11858/gywlxb.20240881
XUE Jianfeng, ZHANG Qiyue, XU Honghao, WANG Wei, LIU Tao, XIA Tao. Blast Resistance of POZD-Coated Reinforced Concrete Beams under Contact Explosion[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054203. doi: 10.11858/gywlxb.20240881
Citation: XUE Jianfeng, ZHANG Qiyue, XU Honghao, WANG Wei, LIU Tao, XIA Tao. Blast Resistance of POZD-Coated Reinforced Concrete Beams under Contact Explosion[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054203. doi: 10.11858/gywlxb.20240881

接触爆炸下POZD涂覆钢筋混凝土梁的抗爆性能

doi: 10.11858/gywlxb.20240881
基金项目: 国家自然科学基金(11302261,11972201)
详细信息
    作者简介:

    薛建锋(1987-),男,博士,高级工程师,主要从事目标毁伤评估研究. E-mail:xuejianfeng666@163.com

    通讯作者:

    汪 维(1983-),男,博士,教授,主要从事工程结构抗爆毁伤评估研究. E-mail:wangwei7@nbu.edu.cn

  • 中图分类号: O381; TU378.2; O521.9

Blast Resistance of POZD-Coated Reinforced Concrete Beams under Contact Explosion

  • 摘要: 为得到接触爆炸下聚脲(polyisocyanate-oxazodone,POZD)涂覆钢筋混凝土梁的抗爆性能,对同一尺寸的钢筋混凝土梁开展了数值模拟研究。采用HyperMesh和LS-DYNA软件建立POZD涂覆钢筋混凝土梁模型,开展了接触爆炸下POZD涂覆钢筋混凝土梁的破坏模式和毁伤效应分析。对普通钢筋混凝土梁在接触爆炸下的破坏模式进行了模拟验证试验,研究了钢筋混凝土梁结构在不同POZD涂层位置和不同装药量条件下的破坏模式和毁伤情况,并对不同POZD涂覆位置的防护效果进行了评估,最后,将接触爆炸下POZD涂覆钢筋混凝土梁划分为3个局部毁伤等级。

     

  • 图  不同应变率下POZD的应力-应变曲线[1620]

    Figure  1.  Stress-strain curves of POZD at different strain rates[1620]

    图  试验布置[13]

    Figure  2.  Test arrangement[13]

    图  试验梁结构尺寸及配筋情况(单位:mm)

    Figure  3.  Dimensions and reinforcement diagram of RC beam (Unit: mm)

    图  混凝土支撑台(单位:mm)

    Figure  4.  Concrete support platform (Unit: mm)

    图  RC梁有限元模型

    Figure  5.  Finite element model of RC beam

    图  3种涂覆位置RC梁有限元模型(单位:mm)

    Figure  6.  Finite element models of RC beam of three positions of POZD coated (Unit: mm)

    图  6 kg TNT接触爆炸下RC梁的数值模拟结果与实际破坏形态对比

    Figure  7.  Comparison of the simulation results of RC beam with the actual damage form under 6 kg TNT

    图  6 kg TNT工况下Model A的数值模拟结果

    Figure  8.  Simulation results of Model A under 6 kg TNT condition

    图  6 kg TNT工况下Model B的数值模拟结果

    Figure  9.  Simulation results of Model B under 6 kg TNT condition

    图  10  6 kg TNT工况下Model C的数值模拟结果

    Figure  10.  Simulation results of Model C under 6 kg TNT condition

    图  11  8 kg TNT工况下Model A的数值模拟结果

    Figure  11.  Simulation results of Model A under 8 kg TNT condition

    图  12  8 kg TNT工况下Model B的数值模拟结果

    Figure  12.  Simulation results of Model B under 8 kg TNT condition

    图  13  8 kg TNT工况下Model C的数值模拟结果

    Figure  13.  Simulation results of Model C under 8 kg TNT condition

    图  14  16 kg TNT工况下Model A的数值模拟结果

    Figure  14.  Simulation results of Model A under 16 kg TNT condition

    图  15  16 kg TNT工况下Model B的数值模拟结果

    Figure  15.  Simulation results of Model B under 16 kg TNT condition

    图  16  16 kg TNT工况下Model C的数值模拟结果

    Figure  16.  Simulation results of Model C under 16 kg TNT condition

    图  17  不同涂覆方式对梁迎爆面破坏长度的影响

    Figure  17.  Influence of coating methods on blasting length of beam

    图  18  不同涂覆方式对梁爆坑深度的影响

    Figure  18.  Influence of coating methods on blasting depth of beam

    图  19  6 kg TNT工况下梁迎爆面的有效塑性应变云图

    Figure  19.  Cloud images of effective plastic strain on the blasting surface of the beam under 6 kg TNT condition

    图  20  8 kg TNT工况下梁迎爆面的有效塑性应变云图

    Figure  20.  Cloud images of effective plastic strain on the blasting surface of the beam under 8 kg TNT condition

    图  21  16 kg TNT工况下梁迎爆面的有效塑性应变云图

    Figure  21.  Cloud images of effective plastic strain on the blasting surface of the beam under 16 kg TNT condition

    图  22  6 kg TNT工况下梁侧面的有效塑性应变云图

    Figure  22.  Cloud images effective of plastic strain of beam side under 6 kg TNT condition

    图  23  8 kg TNT工况下梁侧面的有效塑性应变云图

    Figure  23.  Cloud images of effective plastic strain of beam side under 8 kg TNT condition

    图  24  16 kg TNT工况下梁侧面的有效塑性应变云图

    Figure  24.  Cloud images of effective plastic strain of beam side under 16 kg TNT condition

    图  25  POZD涂敷RC梁的不同等级毁伤破坏形态

    Figure  25.  Local damage grade of POZD coated RC beams

    表  1  炸药的相关参数[11]

    Table  1.   Parameters of explosives[11]

    $ \rho /({\mathrm{g\cdot c{m}}}^{-3}) $ $ D_{{\mathrm{CJ}}}/(\text{km}\cdot {\text{s}}^{-\text{1}}) $
    $ {p_{{\mathrm{CJ}}}}/{\text{GPa}} $ $ A/{\text{GPa}} $ $ B/{\text{MPa}} $ $ {R_1} $ $ {R_2} $ $ \omega $
    1.63 0.693 21 371.2001 32.31 4.15 0.95 0.3
    下载: 导出CSV

    表  2  空气相关参数[12]

    Table  2.   Parameters of air[12]

    $ \rho/(\mathrm{kg\cdot m}^{-3}) $ $ {C_0} $ $ {C_1} $ $ {C_2} $ $ {C_3} $ $ {C_4} $ $ {C_5} $ $ {C_6} $
    1.29 0 0 0 0 0.4 0.4 0
    下载: 导出CSV

    表  3  支座材料参数[3]

    Table  3.   Parameters of support materials[3]

    $ \rho /({\mathrm{g\cdot c{m}}}^{-3}) $ $ E/{\text{GPa}} $ $ \nu $
    7.83 210 0.30
    下载: 导出CSV

    表  4  钢筋材料参数[14]

    Table  4.   Parameters of reinforcement bar[14]

    $ \rho /({\mathrm{g\cdot c{m}}}^{-3}) $ $ E/{\text{GPa}} $ $ \nu $ $ \sigma _{\mathrm{s}}/{\text{GPa}} $ $ F_{\mathrm{S}} $
    7.89 206 0.30 1.724 0.500
    下载: 导出CSV

    表  5  混凝土材料参数[14]

    Table  5.   Parameters of concrete[14]

    $ \rho /({\mathrm{g\cdot c{m}}}^{-3}) $ $ {A_{\text{0}}} $/MPa Rsize/(m/inches) wUCF/(Pa/PSI) LCRATE
    2.30 −45.4 3.94×10−2 145 723
    下载: 导出CSV

    表  6  POZD的相关参数[6]

    Table  6.   Parameters of POZD[6]

    $ \rho /({\mathrm{g\cdot c{m}}}^{-3}) $ $ E/{\text{MPa}} $ $ \nu $ $ {\sigma _{\mathrm{Y}}}/{\text{MPa}} $ $ G/{\text{MPa}} $
    1.02 230 0.4 1.38 3.5
    下载: 导出CSV

    表  7  3种工况下RC梁的数值模拟与试验结果对比

    Table  7.   Comparison of RC beam numerical simulation and test results

    Mass of
    TNT/kg
    Midspan
    displacement
    Failure length of
    front surface
    Failure length of
    back surface
    Depth of crater
    Test/
    mm
    Sim./
    mm
    Error/
    %
    Test/
    mm
    Sim./
    mm
    Error/
    %
    Test/
    mm
    Sim./
    mm
    Error/
    %
    Test/
    mm
    Sim./
    mm
    Error/
    %
    6 330 269 18.4 1400 1337 4.5 1480 1450 2.0 210 221 5.2
    8 900 805 10.6 1470 1412 3.9 1500 1628 8.5 255 269 5.5
    16 Fracture Fracture 1900 1790 5.8 1690 1805 6.8 Perforation Perforation
    下载: 导出CSV

    表  8  6 kg TNT工况下迎爆面和背爆面的数值模拟结果

    Table  8.   Simulation results of the front and back surface of RC beam under 6 kg TNT

    ModelFailure length of front surface/mmFailure length of back surface/mmDepth of crater/mm
    RC13371450221
    A868Good211
    B744Less peeling206
    C712Good167
    下载: 导出CSV

    表  9  8 kg TNT工况下迎爆面和背爆面的数值模拟结果

    Table  9.   Simulation results of the front and back surface of RC beam under 8 kg TNT

    ModelFailure length of front surface/mmFailure length of back surface/mmDepth of crater/mm
    RC14121628269
    A957Less peeling412
    B865Less peeling289
    C726Good213
    下载: 导出CSV

    表  10  16 kg TNT工况下迎爆面和背爆面的数值模拟结果

    Table  10.   Simulation results of the front and back surface of RC beam under 16 kg TNT

    Model Failure length of front surface/mm Failure length of back surface/mm Depth of crater/mm
    RC 1790 1805 Perforation
    A 1258 More peeling 482
    B 1545 1626 Perforation
    C 945 Less peeling 329
    下载: 导出CSV
  • [1] 赵春风, 王强, 王静峰, 等. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能 [J]. 高压物理学报, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598

    ZHAO C F, WANG Q, WANG J F, et al. Blast resistance of containment dome reinforced concrete slab in NPP under close-in explosion [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598
    [2] WANG W, WEI G S, YANG J C, et al. Study on antexplosion performance of reinforced concrete slabs strengthened with POZD coated steel plate under contact explosion [J]. Engineering Failure Analysis, 2022, 140: 106589. doi: 10.1016/j.engfailanal.2022.106589
    [3] WANG W, YANG G R, YANG J C, et al. Experimental and numerical research on reinforced concrete slabs strengthened with POZD coated corrugated steel under contact explosive load [J]. International Journal of Impact Engineering, 2022, 166: 104256. doi: 10.1016/j.ijimpeng.2022.104256
    [4] 吴东, 刘志鹏, 张瑞云, 等. 聚脲喷涂加固钢筋混凝土柱抗爆性能分析 [J]. 四川建筑, 2022, 42(2): 305–309. doi: 10.3969/j.issn.1007-8983.2022.02.098

    WU D, LIU Z P, ZHANG R Y, et al. Analysis of anti-explosive performance of reinforced concrete column [J]. Sichuan Architecture, 2022, 42(2): 305–309. doi: 10.3969/j.issn.1007-8983.2022.02.098
    [5] 赵苏政, 葛文璇. 聚脲涂层防护下钢筋混凝土柱的抗爆性能研究 [J]. 工程爆破, 2022, 28(6): 85–91. doi: 10.19931/j.EB.20210253

    ZHAO S Z, GE W X. Study on anti-detonation performance of reinforced concrete columns protected by polyurea coating [J]. Engineering Blasting, 2022, 28(6): 85–91. doi: 10.19931/j.EB.20210253
    [6] 徐赵威, 汪维, 李奕硕, 等. 接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能 [J]. 爆炸与冲击, 2025, 45(3): 033104. doi: 10.11883/bzycj-2024-0083

    XU Z W, WANG W, LI Y S, et al. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion [J]. Explosion and Shock Waves, 2025, 45(3): 033104. doi: 10.11883/bzycj-2024-0083
    [7] RAHEEM A H A, MAHDY M, MASHALY A A. Mechanical and fracture mechanics properties of ultra-high-performance concrete [J]. Construction and Building Materials, 2019, 213: 561–566. doi: 10.1016/j.conbuildmat.2019.03.298
    [8] ZHANG C W, GHOLIPOUR G, MOUSAVI A A. State-of-the-art review on responses of RC structures subjected to lateral impact loads [J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2477–2507. doi: 10.1007/s11831-020-09467-5
    [9] HALLQUIST J O. LS-DYNA theory manual [M]. Livermore: Livermore Software Technology Corporation, 2006.
    [10] 周清, 齐麟. LS-DYNA软件中5种常用抗爆混凝土材料模型的分析与比较 [J]. 混凝土, 2019(11): 43–49. doi: 10.3969/j.issn.1002-3550.2019.11.010

    ZHOU Q, QI L. Analysis and comparison of 5 different common anti-explosion concrete material models of LS-DYNA software [J]. Concrete, 2019(11): 43–49. doi: 10.3969/j.issn.1002-3550.2019.11.010
    [11] ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64: 54–62. doi: 10.1016/j.tafmec.2013.03.006
    [12] 王喜梦, 刘均, 陈长海, 等. 近距空爆载荷下钢板/聚脲复合结构动响应特性仿真 [J]. 中国舰船研究, 2021, 16(2): 116–124. doi: 10.19693/j.issn.1673-3185.01833

    WANG X M, LIU J, CHEN C H, et al. Simulation on dynamic response characteristics of steel/polyurea composite structures under close-range air blast loading [J]. Chinese Journal of Ship Research, 2021, 16(2): 116–124. doi: 10.19693/j.issn.1673-3185.01833
    [13] 王辉明, 刘飞, 晏麓晖, 等. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应 [J]. 爆炸与冲击, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171

    WANG H M, LIU F, YAN L H, et al. Local damage effects of reinforced concrete beams under contact explosions [J]. Explosion and Shock Waves, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171
    [14] 陈锐林, 李康, 董琪, 等. CFRP加固钢筋混凝土板爆炸冲击作用下动力响应分析的数值模拟 [J]. 铁道科学与工程学报, 2020, 17(6): 1517–1527. doi: 10.19713/j.cnki.43-1423/u.T20180143

    CHEN R L, LI K, DONG Q, et al. Numerical simulation of dynamic response analysis of reinforced concrete slabs strengthened with CFRP under blast load [J]. Journal of Railway Science and Engineering, 2020, 17(6): 1517–1527. doi: 10.19713/j.cnki.43-1423/u.T20180143
    [15] DAVIDSON J S, SUDAME S, DINAN R J. Development of computational models and input sensitivity study of polymer reinforced concrete masonry walls subjected to blast: AFRL-ML-TY-TR-2006-4522 [R]. Barnes Drive: Air Force Research Laboratory, 2004: 26–29.
    [16] WANG W, HUO Q, YANG J C, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2021, 18(9): 1715–1726. doi: 10.1016/j.dt.2021.07.005
    [17] 王逸平, 汪维, 杨建超, 等. 钢板/POZD 复合结构在近距空爆载荷下的抗爆性能 [J]. 高压物理学报, 2023, 37(1): 014104. doi: 10.11858/gywlxb.20220650

    WANG Y P, WANG W, YANG J C, et al. Blast resistant performance of steel/POZD composite structures under close-range air blast loading [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014104. doi: 10.11858/gywlxb.20220650
    [18] 杨光瑞, 汪维, 杨建超, 等. POZD涂覆波纹钢加固钢筋混凝土板抗爆性能 [J]. 兵工学报, 2023, 44(5): 1374–1383. doi: 10.12382/bgxb.2022.0024

    YANG G R, WANG W, YANG J C, et al. Blast resistance of reinforced concrete slabs strengthened with POZD coated corrugated steel [J]. Acta Armamentarii, 2023, 44(5): 1374–1383. doi: 10.12382/bgxb.2022.0024
    [19] WANG W, WEI G, WANG X, et al. Structural damage assessment of RC slab strengthened with POZD coated steel plate under contact explosion [J]. Structures, 2023, 48: 31–39. doi: 10.1016/j.istruc.2022.12.090
    [20] WANG W, ZHANG C, YANG G. Anti-explosion performance of a new type of polyurea-coated corrugated steel plate reinforced concrete slab [J]. International Journal of Concrete Structures and Materials, 2024, 18(1): 42. doi: 10.1186/s40069-024-00682-z
  • 加载中
图(25) / 表(10)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  85
  • PDF下载量:  34
出版历程
  • 收稿日期:  2024-09-02
  • 修回日期:  2024-09-28
  • 网络出版日期:  2025-04-30
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回