基于BKA-CNN-SVM模型的岩爆烈度预测

慕慧文 周宗红 郑发萍 刘剑 曾顺洪 段勇

慕慧文, 周宗红, 郑发萍, 刘剑, 曾顺洪, 段勇. 基于BKA-CNN-SVM模型的岩爆烈度预测[J]. 高压物理学报, 2025, 39(5): 055302. doi: 10.11858/gywlxb.20240880
引用本文: 慕慧文, 周宗红, 郑发萍, 刘剑, 曾顺洪, 段勇. 基于BKA-CNN-SVM模型的岩爆烈度预测[J]. 高压物理学报, 2025, 39(5): 055302. doi: 10.11858/gywlxb.20240880
MU Huiwen, ZHOU Zonghong, ZHENG Faping, LIU Jian, ZENG Shunhong, DUAN Yong. Prediction of Rockburst Grade Based on BKA-CNN-SVM Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 055302. doi: 10.11858/gywlxb.20240880
Citation: MU Huiwen, ZHOU Zonghong, ZHENG Faping, LIU Jian, ZENG Shunhong, DUAN Yong. Prediction of Rockburst Grade Based on BKA-CNN-SVM Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 055302. doi: 10.11858/gywlxb.20240880

基于BKA-CNN-SVM模型的岩爆烈度预测

doi: 10.11858/gywlxb.20240880
基金项目: 国家自然科学基金(52264019, 51864023);云南省基础研究计划项目青年项目(202401AU070175)
详细信息
    作者简介:

    慕慧文(2000-),男,硕士研究生,主要从事采矿与岩石力学研究. E-mail:3188486208@qq.com

    通讯作者:

    周宗红(1967-),男,博士,教授,主要从事采矿与岩石力学研究. E-mail:zhou20051001@163.com

  • 中图分类号: O347; TU45; O521.9

Prediction of Rockburst Grade Based on BKA-CNN-SVM Model

  • 摘要: 为实现准确高效的岩爆烈度预测,做好地下工程灾害防治,提出了一种基于黑翅鸢优化算法-卷积神经网络-支持向量机(BKA-CNN-SVM)的岩爆烈度预测模型。首先,根据岩爆烈度的影响因素,确立6个主要岩爆预测指标,搜集国内外284组岩爆案例,建立岩爆数据库;然后,引入拉依达准则与1.5倍四分位差对数据进行异常值剔除及替换;接着,采用核主成分分析,对数据进行降维及特征提取,并将所提取的特征作为模型输入;最后,通过引入混淆矩阵,结合准确率、精确率、F1值、召回率对模型性能进行评估,并与卷积神经网络(CNN)模型、极限学习机(ELM)模型、卷积神经网络与支持向量机(CNN-SVM)集成模型的性能进行对比。结果表明:BKA-CNN-SVM模型的准确率、精确率、F1值、召回率分别达到95.35%、0.89、0.92、0.94,在预测精度和泛化程度上均明显优于其他模型。采用该模型预测锦屏二级水电站岩爆烈度,结果显示,预测结果与现场情况有较高的一致性。研究结果可为岩爆等级预测提供新方法。

     

  • 图  CNN模型的基本架构

    Figure  1.  Basic architecture of CNN model

    图  CNN-SVM算法流程图

    Figure  2.  Flowchart of CNN-SVM algorithm

    图  实际岩爆等级分布

    Figure  3.  Actual grade distribution of rockburst

    图  数据分布曲线及箱型图

    Figure  4.  Data distribution curve and box diagram

    图  BKA-CNN-SVM流程图

    Figure  5.  Flowchart of BKA-CNN-SVM

    图  测试集混淆矩阵

    Figure  6.  Confusion matrix of test set

    表  1  部分岩爆工程实例数据[1921]

    Table  1.   Part of engineering data of rockburst[1921]

    Serial No. Rockburst prediction index Actual grade
    MTS/MPa UCS/MPa UTS/MPa BCF SCF EEI
    1 21.50 107.52 2.98 0.20 36.04 2.29 1
    2 56.10 131.99 9.44 0.43 13.98 7.44 3
    3 66.77 148.48 8.47 0.45 17.53 5.08 2
    4 39.82 128.46 2.98 0.31 43.11 2.40 3
    5 9.57 99.70 4.80 0.10 20.77 3.80 1
    6 30.10 88.70 3.70 0.34 23.97 6.60 4
    7 9.74 88.51 2.98 0.11 29.70 1.77 1
    8 57.97 96.16 3.77 0.46 25.51 2.53 2
    9 91.30 225.60 17.20 0.40 13.12 7.30 4
    10 55.40 176.00 7.30 0.31 24.11 9.30 3
    11 29.04 124.15 5.00 0.23 24.83 4.39 1
    下载: 导出CSV

    表  2  原始数据的特征描述

    Table  2.   Features description of original data

    Items MTS/MPa UCS/MPa UTS/MPa BCF SCF EEI
    Mean value 51.93 118.52 6.56 0.42 20.18 4.67
    Standard deviation 29.08 50.28 3.62 0.23 9.94 2.29
    Minimum value 2.60 18.23 0.38 0.10 0.15 0.85
    Lower quartile 30.79 88.65 4.05 0.27 13.11 2.98
    Median 50.05 120.00 6.30 0.40 18.96 5.00
    Upper quartile 66.87 150.43 8.92 0.55 25.22 6.43
    Maximum value 148.81 260.64 17.68 1.03 44.70 11.28
    下载: 导出CSV

    表  3  各指标间的相关性系数

    Table  3.   Correlation coefficient of each index

    Predictive parameters Correlation coefficient
    MTS UCS UTS BCF SCF EEI
    MTS 1.0000 0.3330 0.3760 0.6545 0.0863 0.4534
    UCS 0.3330 1.0000 0.5810 0.2786 0.0760 0.5760
    UTS 0.3760 0.5810 1.0000 0.0308 0.5903 0.3787
    BCF 0.6545 0.2786 0.0308 1.0000 0.2210 0.0785
    SCF 0.0863 0.0760 0.5903 0.2210 1.0000 0.0185
    EEI 0.4534 0.5760 0.3787 0.0785 0.0185 1.0000
    下载: 导出CSV

    表  4  特征提取结果

    Table  4.   Feature extraction results

    Component Eigenvalue Principal component contribution rate/% Cumulative contribution rate/%
    1 2.4777 41.29 41.29
    2 1.5666 26.11 67.40
    3 1.2470 20.78 88.19
    4 0.4580 7.63 95.82
    5 0.1280 2.13 97.96
    6 0.1227 2.04 100.00
    下载: 导出CSV

    表  5  CNN的最优参数

    Table  5.   Optimal parameters of CNN

    Learning rate Number of training samples per session Regularization parameter
    0.05 64 1×10−5
    下载: 导出CSV

    表  6  各模型预测的性能结果

    Table  6.   Predicted performance results of each model

    Test set classification accuracy/% Precision
    BKA-CNN-SVM CNN CNN-SVM ELM BKA-CNN-SVM CNN CNN-SVM ELM
    95.35 73.26 82.56 67.44 0.89 0.73 0.70 0.61
    F1 score Recall
    BKA-CNN-SVM CNN CNN-SVM ELM BKA-CNN-SVM CNN CNN-SVM ELM
    0.92 0.67 0.74 0.52 0.94 0.61 0.78 0.44
    下载: 导出CSV

    表  7  不同模型得到的岩爆烈度预测结果

    Table  7.   Rockburst intensity prediction results obtained by various models

    Parameters Actual
    grade
    Grade predicted by models
    MTS/MPa UCS/MPa UTS/MPa BCF SCF EEI BKA-CNN-SVM CNN CNN-SVM ELM
    42.00 117.00 4.80 0.36 24.38 3.20 2 2 2 2 2
    46.40 100.00 4.90 0.46 20.40 2.00 2 2 2 2 2
    40.99 186.30 12.67 0.22 14.70 4.10 3 3 3 3 3
    9.74 88.51 2.98 0.11 29.70 1.77 1 1 1 1 3
    31.05 147.85 11.96 0.21 12.36 3.00 3 3 3 3 1
    16.47 156.90 10.33 0.10 15.19 4.39 3 3 3 3 3
    20.00 112.00 4.70 0.18 23.83 2.50 1 1 1 1 3
    52.00 117.00 4.80 0.44 24.38 3.20 2 2 2 2 2
    19.14 106.31 11.96 0.18 8.89 2.07 1 1 1 1 1
    12.00 85.00 3.60 0.14 23.61 1.50 1 1 2 1 3
    46.20 105.00 5.30 0.44 19.70 2.30 2 2 2 2 2
    39.82 128.46 2.98 0.31 43.11 2.40 3 3 3 3 3
    16.43 157.95 11.06 0.10 14.28 4.99 4 4 3 4 4
    47.00 122.00 5.50 0.39 22.18 3.40 2 2 2 2 2
    28.00 100.00 3.90 0.28 25.64 2.30 2 2 2 2 2
    23.00 80.00 3.00 0.29 26.80 0.85 2 2 2 3 2
    36.09 164.05 12.67 0.22 12.95 3.59 3 3 3 3 2
    21.00 103.00 4.10 0.20 25.12 2.40 2 2 3 2 2
    15.97 114.07 11.96 0.14 9.54 2.40 1 1 1 1 1
    33.15 106.94 2.98 0.31 35.89 2.15 3 3 3 3 3
    下载: 导出CSV
  • [1] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673.

    FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673.
    [2] 汤志立, 徐千军. 基于9种机器学习算法的岩爆预测研究 [J]. 岩石力学与工程学报, 2020, 39(4): 773–781.

    TANG Z L, XU Q J. Rockburst prediction based on nine machine learning algorithms [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 773–781.
    [3] 李宁, 王李管, 贾明涛. 基于粗糙集理论和支持向量机的岩爆预测 [J]. 中南大学学报(自然科学版), 2017, 48(5): 1268–1275.

    LI N, WANG L G, JIA M T. Rockburst prediction based on rough set theory and support vector machine [J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1268–1275.
    [4] 吴顺川, 张晨曦, 成子桥. 基于PCA-PNN原理的岩爆烈度分级预测方法 [J]. 煤炭学报, 2019, 44(9): 2767–2776.

    WU S C, ZHANG C X, CHENG Z Q. Prediction of intensity classification of rockburst based on PCA-PNN principle [J]. Journal of China Coal Society, 2019, 44(9): 2767–2776.
    [5] 李明亮, 李克钢, 秦庆词, 等. 岩爆烈度等级预测的机器学习算法模型探讨及选择 [J]. 岩石力学与工程学报, 2021, 40(Suppl 1): 2806–2816.

    LI M L, LI K G, QIN Q C, et al. Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Suppl 1): 2806–2816.
    [6] 吴菡, 郭永刚, 何军杰, 等. 基于GWO-SVM岩爆分级预测模型 [J]. 路基工程, 2023(1): 49–54.

    WU H, GUO Y G, HE J J, et al. Rock burst classification prediction model based on GWO-SVM [J]. Subgrade Engineering, 2023(1): 49–54.
    [7] BASNET P M S, MAHTAB S, JIN A B. A comprehensive review of intelligent machine learning based predicting methods in long-term and short-term rock burst prediction [J]. Tunnelling and Underground Space Technology, 2023, 142: 105434. doi: 10.1016/j.tust.2023.105434
    [8] 靳春玲, 姬照泰, 贡力, 等. 基于WOA-SVM的引水隧洞岩爆烈度评估模型 [J]. 中国安全科学学报, 2023, 33(9): 41–48.

    JIN C L, JI Z T, GONG L, et al. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41–48.
    [9] 李康楠, 吴雅琴, 杜锋, 等. 基于卷积神经网络的岩爆烈度等级预测 [J]. 煤田地质与勘探, 2023, 51(10): 94–103. doi: 10.12363/issn.1001-1986.23.01.0018

    LI K N, WU Y Q, DU F, et al. Prediction of rockburst intensity grade based on convolutional neural network [J]. Coal Geology & Exploration, 2023, 51(10): 94–103. doi: 10.12363/issn.1001-1986.23.01.0018
    [10] 郭延华, 赵帅. 基于KPCA-WOA-KELM的岩爆烈度预测 [J]. 河北工程大学学报(自然科学版), 2021, 38(2): 1–7.

    GUO Y H, ZHAO S. Classified prediction model of rockburst using KPCA-WOA-KELM [J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(2): 1–7.
    [11] YIN X, LIU Q S, PAN Y C, et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: comparison of eight single and ensemble models [J]. Natural Resources Research, 2021, 30(2): 1795–1815. doi: 10.1007/s11053-020-09787-0
    [12] 刘慧敏, 徐方远, 刘宝举, 等. 基于CNN-LSTM的岩爆危险等级时序预测方法 [J]. 中南大学学报(自然科学版), 2021, 52(3): 659–670.

    LIU H M, XU F Y, LIU B J, et al. Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM [J]. Journal of Central South University (Science and Technology), 2021, 52(3): 659–670.
    [13] 辛付宇, 邢丽坤, 刘笑. 基于CNN-GRU神经网络的锂电池SOH估计与RUL预测 [J]. 上海节能, 2024(5): 819–826.

    XIN F Y, XING L K, LIU X. SOH estimation and RUL prediction of lithium battery based on CNN-GRU neural networks [J]. Shanghai Energy Saving, 2024(5): 819–826.
    [14] 仝跃, 陈亮, 黄宏伟. 基于PSO-SVM算法的高放废物处置北山预选区岩爆预测 [J]. 长江科学院院报, 2017, 34(5): 68–74. doi: 10.11988/ckyyb.20160058

    TONG Y, CHEN L, HUANG H W. Rockburst prediction of Beishan pre-selected area for disposal of high-level radioactive waste based on PSO-SVM [J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 68–74. doi: 10.11988/ckyyb.20160058
    [15] 陈志勇, 杜江. 基于1D-CNN-PSO-SVM的电力变压器故障诊断 [J]. 计算机仿真, 2024, 41(3): 71–75, 87. doi: 10.3969/j.issn.1006-9348.2024.03.013

    CHEN Z Y, DU J. Fault diagnosis of power transformer based on 1D-CNN-PSO-SVM [J]. Computer Simulation, 2024, 41(3): 71–75, 87. doi: 10.3969/j.issn.1006-9348.2024.03.013
    [16] WANG J, WANG W C, HU X X, et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems [J]. Artificial Intelligence Review, 2024, 57(4): 98. doi: 10.1007/s10462-024-10723-4
    [17] LIU W T, REN Y Y, MENG X Y, et al. Analysis of potential water inflow rates at an underground coal mine using a WOA-CNN-SVM approach [J]. Water, 2024, 16(6): 813. doi: 10.3390/w16060813
    [18] 刘剑, 周宗红, 刘军, 等. 基于主成分分析和改进Bayes判别的岩爆等级预测 [J]. 采矿与岩层控制工程学报, 2022, 4(5): 16–26.

    LIU J, ZHOU Z H, LIU J, et al. Prediction of rockburst grade based on principal component analysis and improved Bayesian discriminant analysis [J]. Journal of Mining and Strata Control Engineering, 2022, 4(5): 16–26.
    [19] XU G, LI K G, LI M L, et al. Rockburst intensity level prediction method based on FA-SSA-PNN model [J]. Energies, 2022, 15(14): 5016. doi: 10.3390/en15145016
    [20] GUO J, GUO J W, ZHANG Q L, et al. Research on rockburst classification prediction based on BP-SVM model [J]. IEEE Access, 2022, 10: 50427–50447. doi: 10.1109/ACCESS.2022.3173059
    [21] WANG Z Y, WANG Y L, JIN X L. Prediction of grade classification of rock burst based on PCA-SSA-PNN architecture [J]. Geofluids, 2023(1): 5299919.
    [22] 贾义鹏. 岩爆预测方法与理论模型研究 [D]. 杭州: 浙江大学, 2015.

    JIA Y P. Study on prediction method and theorial model of rockburst [D]. Hangzhou: Zhejiang University, 2015.
    [23] 张恒源, 范俊奇, 郭佳奇, 等. 基于多参量判据的深地下工程岩爆倾向性研究 [J]. 高压物理学报, 2022, 36(2): 025202. doi: 10.11858/gywlxb.20210857

    ZHANG H Y, FAN J Q, GUO J Q, et al. Rockburst tendency for deep underground engineering based on multi-parameters criterion [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025202. doi: 10.11858/gywlxb.20210857
    [24] 张春生, 周垂一, 刘宁. 锦屏二级水电站深埋特大引水隧洞关键技术 [J]. 隧道建设(中英文), 2017, 37(11): 1492–1501.

    ZHANG C S, ZHOU C Y, LIU N. Key technologies for extremely-large deep-buried headrace tunnel: a case study of Jinping Ⅱ Hydropower Station [J]. Tunnel Construction, 2017, 37(11): 1492–1501.
    [25] SHAN Z G, YAN P. Management of rock bursts during excavation of the deep tunnels in Jinping Ⅱ Hydropower Station [J]. Bulletin of Engineering Geology and the Environment, 2010, 69(3): 353–363. doi: 10.1007/s10064-010-0266-2
    [26] XIE X B, JIANG W, GUO J. Research on rockburst prediction classification based on GA-XGB model [J]. IEEE Access, 2021, 9: 83993–84020. doi: 10.1109/ACCESS.2021.3085745
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  152
  • PDF下载量:  30
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-10-29
  • 录用日期:  2024-11-19
  • 网络出版日期:  2025-04-28
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回