爆炸作用下全户内变电站装配式墙板的动力响应实验研究

李林 刘勇 魏珍中 马小敏 雷建银 李世强

李林, 刘勇, 魏珍中, 马小敏, 雷建银, 李世强. 爆炸作用下全户内变电站装配式墙板的动力响应实验研究[J]. 高压物理学报, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873
引用本文: 李林, 刘勇, 魏珍中, 马小敏, 雷建银, 李世强. 爆炸作用下全户内变电站装配式墙板的动力响应实验研究[J]. 高压物理学报, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873
LI Lin, LIU Yong, WEI Zhenzhong, MA Xiaomin, LEI Jianyin, LI Shiqiang. Dynamic Response Experiment of Prefabricated Wall Panels for a Whole-Indoor Substation under Blast Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873
Citation: LI Lin, LIU Yong, WEI Zhenzhong, MA Xiaomin, LEI Jianyin, LI Shiqiang. Dynamic Response Experiment of Prefabricated Wall Panels for a Whole-Indoor Substation under Blast Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873

爆炸作用下全户内变电站装配式墙板的动力响应实验研究

doi: 10.11858/gywlxb.20240873
基金项目: 国家自然科学基金(12202303,12072219,12372363)
详细信息
    作者简介:

    李 林(1981-),男,高级工程师,主要从事变电土建研究. E-mail:lilina@sdepci.com

    通讯作者:

    李世强(1986-),男,博士,副教授,主要从事冲击动力学研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O347.1; O521.9

Dynamic Response Experiment of Prefabricated Wall Panels for a Whole-Indoor Substation under Blast Loading

  • 摘要: 利用纤维水泥板、蜂窝铝板和铝合金板组合设计了一种新型的变电站装配式墙板结构,通过实验研究了该结构在爆炸载荷下的动力响应特性。考察了不同炸药量、不同装药距离时的超压载荷特征,分析了蜂窝孔径等参数对结构变形失效模式、背爆面挠度及应变、芯层压缩量、纤维水泥板裂纹分布的影响。结果表明:在有限空间内,爆炸超压的时间特征与在无限空间中类似,中心独立测量的超压峰值和正压持续时间分别为边缘直接测量的2.4~10.0倍和0.44~0.71倍;结构主要呈现前面板凹陷、后面板凸起的变形模式;迎爆面纤维水泥板水平裂纹多分布于长边边界处,背爆面裂纹多分布于中心和对角线附近;与较小孔径的蜂窝结构相比,具有较大孔径的蜂窝结构的背爆面残余挠度较大,纤维水泥板裂纹总长度较长。因此,小孔径蜂窝板具有较好的抗冲击性能。

     

  • 图  装配式墙板结构

    Figure  1.  Prefabricated wall panel structure

    图  实验现场设置

    Figure  2.  Experimental setup

    图  不同孔径铝蜂窝的准静态压缩应力-应变关系

    Figure  3.  Quasi-static compressive stress-strain relationships of aluminum honeycomb with different pore sizes

    图  装药量300 g、装药距离300 mm时的超压时程曲线

    Figure  4.  Overpressure time history curve when the explosive mass is 300 g and the stand off distance is 300 mm

    图  工况2结构背爆面的挠度时程云图

    Figure  5.  Deflection-time histories of the structural back face for Case 2

    图  工况6结构背爆面特征点的挠度时程曲线

    Figure  6.  Deflection-time history curve of the characteristic point of the structural back face for Case 6

    图  背爆面水平方向的拉格朗日应变时程云图

    Figure  7.  Lagrange strain time cloud diagram in the horizontal direction of the structural back face

    图  结构背爆面特征区域平均主应变时程曲线

    Figure  8.  Average principal strain time history curve of the reference zone on the structural back face

    图  工况2夹芯墙板的典型变形模式及残余挠度分布

    Figure  9.  Typical deformation mode and residual deflection distribution of sandwich wall panel for Case 2

    图  10  不同试件前后面板最大残余挠度对比

    Figure  10.  Comparison of the maximum residual deflection of the front and back face sheets of different specimens

    图  11  工况2和工况5中结构前后纤维水泥板的裂纹分布

    Figure  11.  Crack distribution of the front and back fiber cement board for Case 2 and Case 5

    图  12  装药距离为300 mm时不同装药量前后纤维水泥板裂纹总长度对比

    Figure  12.  Comparison of crack length on front and back fiber cement board for two kinds of sandwich panels with the stand off distance of 300 mm and different explosive mass

    图  13  装药量为700 g时不同装药距离前后纤维水泥板裂纹总长度对比

    Figure  13.  Comparison of crack length on front and back fiber cement board for two kinds of sandwich panels with the explosive mass of 700 g and different stand off distance

    表  1  实验工况

    Table  1.   Experimental conditions

    Case D/mm m/g d/mm Case D/mm m/g d/mm
    1 5.20 300 300 7 5.20 700 500
    2 5.20 500 300 8 5.20 500 500
    3 5.20 700 300 9 5.20 1000 500
    4 10.38 300 300 10 10.38 700 500
    5 10.38 500 300 11 10.38 1000 500
    6 10.38 700 300
    下载: 导出CSV

    表  2  超压特征参数

    Table  2.   Parameters of overpressure

    m/g mTNT/g $ {p}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{T}} $/MPa d/mm $ {{{\overline{p}_{\mathrm{max}}^{\rm{ZD}}}}} $/MPa $ {{{\overline{p}_{\mathrm{max}}^{\rm{BZ}}}}} $/MPa $\Delta \overline{t}^{\mathrm{Z}\mathrm{D}} $/μs $\Delta \overline{t}^{\mathrm{B}\mathrm{Z}} $/μs $ {\rho }_{p} $ $ {\rho }_{t} $
    300 60–90 10.603–15.121 300 10.348 1.033 153 350 10.0 0.44
    500 100–150 16.534–23.034 300 18.655 2.424 216 320 7.7 0.68
    700 140–210 21.800–29.878 300 22.549 3.963 223 313 5.7 0.71
    500 100–150 4.059–5.998 500 4.769 2.045 192 388 2.3 0.49
    700 140–210 5.617–8.221 500 8.490 3.593 184 350 2.4 0.53
    1 000 200–300 7.858–11.357 500 11.413 200
    下载: 导出CSV
  • [1] 刘聪, 张世联. 垂直围壁对爆炸载荷作用下固支方板动力响应特性影响分析 [J]. 船舶力学, 2021, 25(1): 13–14.

    LIU C, ZHANG S L. Influence of vertical surroundings on the dynamic response of fixed square plate subjected to blast loading [J]. Journal of Ship Mechanics, 2021, 25(1): 13–14.
    [2] 中华人民共和国住房和城乡建设部. 火力发电厂与变电站设计防火规范: GB 50229—2019 [S]. 北京: 中国计划出版社, 2019.
    [3] 国网基建部. 变电站模块化建设2.0版技术导则 [EB/OL]. (2021-12-01) [2023-07-22]. http://xy-cost.com/archives/213442.
    [4] LIU H, LIU H, YANG J L. Clamped sandwich beams with thick weak cores from central impact: a theoretical study [J]. Composite Structures, 2017, 169: 21–28. doi: 10.1016/j.compstruct.2017.02.028
    [5] HOU W H, ZHU F, LU G X, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core [J]. International Journal of Impact Engineering, 2010, 37(10): 1045–1055. doi: 10.1016/j.ijimpeng.2010.03.006
    [6] 朱浩霖, 张天辉, 刘志芳. 重复冲击载荷下泡沫铝夹芯壳的动态响应 [J]. 高压物理学报, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721

    ZHU H L, ZHANG T H, LIU Z F. Dynamic responses of aluminum foam sandwich shells under repeated impact loadings [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721
    [7] ZHU F, ZHAO L M, LU G X, et al. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(5): 687–699. doi: 10.1016/j.ijimpeng.2008.12.004
    [8] ZHU F, WANG Z H, LU G X, et al. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading [J]. International Journal of Impact Engineering, 2010, 37(6): 625–637. doi: 10.1016/j.ijimpeng.2009.11.003
    [9] CHANG W S, VENTSEL E, KRAUTHAMMER T, et al. Bending behavior of corrugated-core sandwich plates [J]. Composite Structures, 2005, 70(1): 81–89. doi: 10.1016/j.compstruct.2004.08.014
    [10] SHU C F, ZHAO S Y, HOU S J. Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading [J]. Thin-Walled Structures, 2018, 133: 42–51. doi: 10.1016/j.tws.2018.09.008
    [11] LIU H, LIU H, YANG J L, et al. Cantilever sandwich beams with pyramidal truss cores subjected to tip impact [J]. Science China: Technological Sciences, 2013, 56(1): 181–187. doi: 10.1007/s11431-012-5058-4
    [12] WICKS N, HUTCHINSON J W, Performance of sandwich plates with truss cores [J]. Mechanics of Materials, 2004, 36(8): 739–751.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  43
  • PDF下载量:  21
出版历程
  • 收稿日期:  2024-08-19
  • 修回日期:  2024-09-30
  • 录用日期:  2025-02-27
  • 网络出版日期:  2025-03-17
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回