弹丸高速侵彻下AZ31B镁合金响应的数值模拟研究

周涛 刘益军 王子豪 杨开华

周涛, 刘益军, 王子豪, 杨开华. 弹丸高速侵彻下AZ31B镁合金响应的数值模拟研究[J]. 高压物理学报, 2025, 39(4): 044201. doi: 10.11858/gywlxb.20240868
引用本文: 周涛, 刘益军, 王子豪, 杨开华. 弹丸高速侵彻下AZ31B镁合金响应的数值模拟研究[J]. 高压物理学报, 2025, 39(4): 044201. doi: 10.11858/gywlxb.20240868
ZHOU Tao, LIU Yijun, WANG Zihao, YANG Kaihua. Numerical Study on Response of AZ31B Magnesium Alloy Subjected to High-Velocity Projectile Perforation[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044201. doi: 10.11858/gywlxb.20240868
Citation: ZHOU Tao, LIU Yijun, WANG Zihao, YANG Kaihua. Numerical Study on Response of AZ31B Magnesium Alloy Subjected to High-Velocity Projectile Perforation[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044201. doi: 10.11858/gywlxb.20240868

弹丸高速侵彻下AZ31B镁合金响应的数值模拟研究

doi: 10.11858/gywlxb.20240868
基金项目: 贵州大学引进人才科研项目(贵大人基合字[2022]34号);贵州大学基础研究项目(贵大基础[2023]42号);贵州大学省级本科教学内容和课程体系改革项目(2023008);贵州省基础研究(自然科学)项目(黔科合基础-zk[2025]面上684)
详细信息
    作者简介:

    周 涛(2000-),男,硕士研究生,主要从事冲击动力学研究. E-mail:18209824929@163.com

    通讯作者:

    刘益军(1995-),男,博士,副教授,主要从事冲击动力学研究. E-mail:liuyj@gzu.edu.cn

    王子豪(1994-),男,博士,博士后,主要从事冲击动力学研究. E-mail:hwangzi@ustc.edu.cn

  • 中图分类号: O385; O521.9

Numerical Study on Response of AZ31B Magnesium Alloy Subjected to High-Velocity Projectile Perforation

  • 摘要: 镁合金在汽车、航空航天、电子工业等领域的应用日益广泛。为了准确描述AZ31B镁合金在高速冲击荷载作用下的响应,建立了金属动态本构模型,并编译成VUMAT用户子程序。采用万能试验机进行了光滑圆棒的准静态拉伸和异形剪切试验,基于ABAQUS/EXPLICIT建立了有限元模型,通过数值模拟校准了AZ31B镁合金的强度模型和失效准则的相关参数。通过对比数值模拟结果与0.5-cal FSP子弹及20 mm FSP子弹冲击AZ31B镁合金靶板试验结果,验证了模型的精确性和适用性,分析了弹头形状和靶板厚度对弹丸高速侵彻AZ31B镁合金的影响。研究发现:当前模型能较好地预测靶板的弹道极限和穿孔破坏形貌;不同形状弹丸冲击下AZ31B镁合金靶板的失效机制不同,平头弹对应的弹道极限最大,锥形弹对应的弹道极限最小;靶板厚度会影响失效模式,厚靶以剪切破坏为主,而薄靶以弯曲变形和花瓣形撕裂破坏为主。

     

  • 图  微控电子万能试验机

    Figure  1.  Micro control electronic universal testing machine

    图  取样示意图

    Figure  2.  Schematic diagram of sampling

    图  准静态拉伸试样的照片和尺寸(单位:mm)

    Figure  3.  Photograph and dimensional diagram of the quasi-static tensile specimen (Unit: mm)

    图  准静态异形剪切试样的照片和尺寸(单位:mm)

    Figure  4.  Photograph and dimensional diagram of the quasi-static irregular shear specimen (Unit: mm)

    图  准静态拉伸下不同网格尺寸对应的断裂位移

    Figure  5.  Variation of fracture displacement with element size under quasi-static tension loading

    图  光滑圆棒试样准静态拉伸的有限元模型

    Figure  6.  Finite element model for smooth round bar specimen under quasi-static tensile loading

    图  异形剪切试样准静态拉伸的有限元模型

    Figure  7.  Finite element model for irregular shear specimen under quasi-static tensile loading

    图  准静态工况下数值模拟与试验的荷载-位移曲线对比

    Figure  8.  Comparison of load-displacement curves obtained from numerical simulations and test data under quasi-static conditions

    图  本模型预测的D与应变率的关系

    Figure  9.  Relationship between D and strain rate predicted by the present model

    图  10  本模型预测的${ {\sigma }_{0}^{T}/{\sigma }_{0}^{\rm {RM}} }$与${ {T}^{\mathrm{*}}} $的关系

    Figure  10.  Relationship between ${ {\sigma }_{0}^{T}/{\sigma }_{0}^{\rm {RM}}} $ and ${ {T}^{\mathrm{*}} }$ predicted by the present model

    图  11  本模型预测的AZ31B镁合金的断裂应变与应力三轴度的关系

    Figure  11.  Relationship between fracture strain and stress triaxiality for AZ31B magnesium alloy predicted by the present model

    图  12  本模型预测的AZ31B镁合金的断裂应变与应力三轴度、Lode角参数的三维空间图

    Figure  12.  Three-dimensional spatial diagram of fracture strain, stress triaxiality, and Lode angle for AZ31B magnesium alloy predicted by the present model

    图  13  0.5-cal FSP子弹撞击AZ31B镁合金靶板有限元模型(单位:mm)

    Figure  13.  Finite element model for AZ31B magnesium alloy plate subjected to impact of 0.5-cal FSP bullet (Unit: mm)

    图  14  20 mm FSP子弹撞击AZ31B镁合金靶板有限元模型(单位:mm)

    Figure  14.  Finite element model for AZ31B magnesium alloy plate subjected to impact of 20 mm FSP bullet (Unit: mm)

    图  15  单单元应力-应变曲线的理论与计算结果比较

    Figure  15.  Comparison between theoretical and calculated stress-strain curves for one element

    图  16  数值模拟预测的0.5-cal FSP子弹撞击25 mm厚AZ31B镁合金靶板的残余速度与试验数据的比较

    Figure  16.  Comparison of numerically predicted residual velocity with the test data for 25 mm thick AZ31B magnesium alloy plate struck by 0.5-cal FSP bullet

    图  17  模拟得到的0.5-cal FSP子弹撞击25 mm厚AZ31B镁合金靶板时靶板破坏模式与试验结果[32]的对比

    Figure  17.  Comparison of numerically predicted failure pattern with the test result[32] for 25 mm thick AZ31B magnesium alloy plate struck by 0.5-cal FSP bullet

    图  18  20 mm FSP子弹撞击38 mm厚AZ31B镁合金靶板数值模拟预测的残余速度与试验数据的比较

    Figure  18.  Comparison of numerically predicted residual velocity with the test data for 38 mm thick AZ31B magnesium alloy plate struck by 20 mm FSP bullet

    图  19  模拟得到的20 mm FSP子弹撞击38 mm厚AZ31B镁合金靶板的靶板破坏模式与试验结果[32]的对比

    Figure  19.  Comparison of numerical predicted failure pattern with the test result[32] for 38 mm thick AZ31B magnesium alloy plate struck by 20 mm FSP bullet

    图  20  不同形状子弹示意图(单位:mm)

    Figure  20.  Schematic diagram of bullets with different nose shapes (Unit: mm)

    图  21  数值模拟预测的不同子弹撞击25 mm厚AZ31B镁合金靶板时靶板的破坏模式

    Figure  21.  Numerical predictions of failure patterns for 25 mm thick AZ31B magnesium alloy plate subjected to impact of different nose shape bullets

    图  22  数值模拟预测的不同子弹撞击4 mm厚AZ31B镁合金靶板后靶板的破坏模式

    Figure  22.  Numerical predictions of failure patterns for 4 mm thick AZ31B magnesium alloy plate subjected to impacts of different nose shape projectiles

    表  1  AZ31B镁合金板的化学成分及其质量分数

    Table  1.   Chemical compositions and mass fraction of the AZ31B magnesium alloy sheet %

    Al Zn Mn Fe Cu Si Ni Ca Mg
    3.01 0.97 0.3 1.8×10−4 6×10−4 3×10−3 2×10−5 1×10−6 95.7
    下载: 导出CSV

    表  2  AZ31B镁合金的材料参数

    Table  2.   Material parameters for AZ31B magnesium alloy

    $ \rho_0 \rm{/(kg\cdot {m}^{-3}}) $ $ E\rm{/GPa} $ $ \nu $ $ {T}_{\rm{m}}\rm{/K} $ $ {T}_{\rm{a}}\rm{/K} $ $ \chi $ $ {c}_{{p}}{/({\mathrm{J}}\cdot {{\mathrm{kg}}}^{-1}\cdot {{\mathrm{K}}}^{-1})} $
    1780[18] 45[18] 0.34[18] 923 293 0.9 1020[33]
    $ {C}_{0}/{({\mathrm{m}}\cdot{{\mathrm{s}}}^{-1})} $ $ {S}_{1} $ $ {\varGamma }_{0} $ $ {C}_{1} $ $ {C}_{2} $ $ {C}_{3} $ $ {C}_{4} $
    4516[34] 1.256[34] 1.43[34] 0.40 0.32 0.020 (−0.113)[31] −1.803 (2.544)[31]
    $ {A}_{\text{t}}\text{/MPa} $ $ {B}_{\text{t} }$ $ {n}_{\text{t}} $ $ {A}_{\text{s}}\text{/MPa} $ $ {B}_{\text{s}} $ $ {n}_{\rm s} $ $ {W}_{x} $
    170 56740 0.058 70 255 0.358 3.657
    $ {B}_{y} $ $ {W}_{y} $ $ S $ $ {\dot{\varepsilon }}_{\text{quasi}}/{\rm s}^{-1} $ $ {\varepsilon }_{x} $ $ {m}_{1} $ $ {m}_{2} $
    4.617 1.064 0.2013 0.001 0.08 1.476 4.384
    Note: The values in parentheses are the failure parameters when the temperature is greater than or equal to 573 K.
    下载: 导出CSV

    表  3  模型预测的弹道极限和试验数据的比较(0.5-cal FSP)

    Table  3.   Comparison between the ballistic limits predicted by the present model and obtained by test data (0.5-cal FSP)

    $ a $ $ P $ $ {v}_{\text{bl}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $
    Present model Test data
    0.4924 1.839 523 507
    下载: 导出CSV

    表  4  模型预测的弹道极限与试验数据的比较(20 mm FSP)

    Table  4.   Comparison between the ballistic limits predicted by the present model and obtained by test data (20 mm FSP)

    $ a $ $ P $ $ {v}_{\rm {bl}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $
    Present model Test data
    0.5018 1.819 498 477
    下载: 导出CSV

    表  5  不同子弹冲击下的弹道极限

    Table  5.   Ballistic limits under different bullet impacts

    Bullet $ a $ $ P $ $ {v}_{\rm{bl}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $
    Flat-nosed projectile 0.5417 1.550 560
    Hemispherical-nosed projectile 0.6149 2.200 467
    Ogival-nosed projectile 0.8591 2.390 422
    Conical-nosed projectile 0.8919 2.105 414
    下载: 导出CSV
  • [1] YANG Y, XIONG X M, CHEN J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. Journal of Magnesium and Alloys, 2021, 9(3): 705–747. doi: 10.1016/j.jma.2021.04.001
    [2] SONG J F, CHEN J, XIONG X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. Journal of Magnesium and Alloys, 2022, 10(4): 863–898. doi: 10.1016/j.jma.2022.04.001
    [3] YANG Y, XIONG X M, CHEN J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. Journal of Magnesium and Alloys, 2023, 11(8): 2611–2654. doi: 10.1016/j.jma.2023.07.011
    [4] ZHU Y P, GUO X R, LEI Y J, et al. Hydrated eutectic electrolytes for high-performance Mg-ion batteries [J]. Energy & Environmental Science, 2022, 15(3): 1282–1292.
    [5] DIERINGA H, STJOHN D, PÉREZ PRADO M T, et al. Editorial: latest developments in the field of magnesium alloys and their applications [J]. Frontiers in Materials, 2021, 8: 726297. doi: 10.3389/fmats.2021.726297
    [6] BOBE K, WILLBOLD E, HAUPT M, et al. Biodegradable open-porous scaffolds made of sintered magnesium W4 and WZ21 short fibres show biocompatibility in vitro and in long-term in vivo evaluation [J]. Acta Biomaterialia, 2022, 148: 389–404. doi: 10.1016/j.actbio.2022.06.005
    [7] MOHAMMADI ZERANKESHI M, ALIZADEH R, GERASHI E, et al. Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys [J]. Journal of Magnesium and Alloys, 2022, 10(7): 1737–1785. doi: 10.1016/j.jma.2022.04.010
    [8] 谢奇峻. AZ31B镁合金冲击动态力学行为的实验和本构模型研究 [D]. 成都: 西南交通大学, 2018: 1–2.

    XIE Q J. Experimental and constitutive model study on impact dynamic mechanical behavior of AZ31B magnesium alloy [D]. Chengdu: Southwest Jiaotong University, 2018: 1–2.
    [9] FENG F, HUANG S Y, MENG Z H, et al. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures [J]. Materials & Design, 2014, 57: 10–20.
    [10] ULACIA I, SALISBURY C P, HURTADO I, et al. Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures [J]. Journal of Materials Processing Technology, 2011, 211(5): 830–839. doi: 10.1016/j.jmatprotec.2010.09.010
    [11] ZHANG W G, LI K, CHI R Q, et al. Insights into microstructural evolution and deformation behaviors of a gradient textured AZ31B Mg alloy plate under hypervelocity impact [J]. Journal of Materials Science & Technology, 2021, 91: 40–57.
    [12] PÄRNÄNEN T, ALDERLIESTEN R, RANS C, et al. Applicability of AZ31B-H24 magnesium in fibre metal laminates: an experimental impact research [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1578–1586. doi: 10.1016/j.compositesa.2012.04.008
    [13] ZHANG F, LIU Z, WANG Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. Journal of Magnesium and Alloys, 2020, 8(1): 172–183. doi: 10.1016/j.jma.2019.05.013
    [14] WANG Q L, BERTOLINI R, BRUSCHI S, et al. Anisotropic fracture behavior of AZ31 magnesium alloy sheets as a function of the stress state and temperature [J]. International Journal of Mechanical Sciences, 2019, 163: 105146. doi: 10.1016/j.ijmecsci.2019.105146
    [15] EZHIL VENDHAN B, HARIKRISHNA K L, LAKSHMINARAYANAN A K. Numerical simulation on effect of impact velocity and target thickness in magnesium alloy AZ31B [J]. Applied Mechanics and Materials, 2015, 787: 291–295. doi: 10.4028/www.scientific.net/AMM.787.291
    [16] 周琳. 金属材料新的动态本构模型 [D]. 合肥: 中国科学技术大学, 2019: 35–36.

    ZHOU L. A new dynamic constitutive model for metallic materials [D]. Hefei: University of Science and Technology of China, 2019: 35–36.
    [17] 潘鸿晨. AZ31B镁合金板材宏-微观力学模型和韧性断裂准则研究 [D]. 上海: 上海交通大学, 2018: 31–32.

    PAN H C. Study on Macro-Micro mechanical model and ductility fracture criterion of rolled AZ31B magnesium alloy [D]. Shanghai: Shanghai Jiao Tong University, 2018: 31–32.
    [18] FENG F, HUANG S Y, MENG Z H, et al. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state [J]. Materials Science and Engineering: A, 2014, 594: 334–343. doi: 10.1016/j.msea.2013.11.008
    [19] LI Z G, WANG J J, YANG H F, et al. A modified Johnson-Cook constitutive model for characterizing the hardening behavior of typical magnesium alloys under tension at different strain rates: experiment and simulation [J]. Journal of Materials Engineering and Performance, 2020, 29(12): 8319–8330. doi: 10.1007/s11665-020-05288-6
    [20] KURUKURI S, WORSWICK M J, GHAFFARI TARI D, et al. Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2015): 20130216. doi: 10.1098/rsta.2013.0216
    [21] 吴秀敏, 池成忠, 崔晓磊, 等. 应变速率与温度对AZ31B镁合金板材各向异性的影响 [J]. 轻合金加工技术, 2020, 48(5): 23–28.

    WU X M, CHI C Z, CUI X L, et al. Effect of strain rate and temperature on anisotropy of AZ31B magnesium alloy sheet [J]. Light Alloy Fabrication Technology, 2020, 48(5): 23–28.
    [22] MENG Z H, HUANG S Y, HU J H. Research on flow stress of magnesium alloy sheet under warm and high strain rate forming condition [J]. Advanced Materials Research, 2011, 189: 2522–2525.
    [23] KANG J E, YOON J Y, CHOI I K, et al. Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs [J]. Design & Manufacturing, 2021, 15(2): 23–29.
    [24] RODRIGUEZ A K, KRIDLI G, AYOUB G, et al. Effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B alloys sheets [J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3115–3125. doi: 10.1007/s11665-013-0598-8
    [25] DONG J R, ZHANG D F, DONG Y F, et al. Critical damage value of AZ31B magnesium alloy with different temperatures and strain rates [J]. Rare Metals, 2021, 40(1): 137–142. doi: 10.1007/s12598-014-0440-y
    [26] XUE S, YANG T, LIU X D, et al. Strain rate and temperature effects on formability and microstructure of AZ31B magnesium alloy sheet [J]. Metals, 2022, 12(7): 1103. doi: 10.3390/met12071103
    [27] RODRIGUEZ A K, AYOUB G A, MANSOOR B, et al. Effect of strain rate and temperature on fracture of magnesium alloy AZ31B [J]. Acta Materialia, 2016, 112: 194–208. doi: 10.1016/j.actamat.2016.03.061
    [28] JAIMIN A, KOTKUNDE N, SADHUKHAN A, et al. Flow stress and work hardening behaviour of Mg-3Al-1Zn alloy [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237(3): 719–730. doi: 10.1177/09544089221106970
    [29] 周琳, 文鹤鸣. 金属材料失效分析的新方法 [J]. 高压物理学报, 2019, 33(1): 014103. doi: 10.11858/gywlxb.20180613

    ZHOU L, WEN H M. A new approach for the failure of metallic materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014103. doi: 10.11858/gywlxb.20180613
    [30] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistic. The Hague, Netherlands, 1983.
    [31] JIA W T, WANG L J, MA L F, et al. Deformation failure behavior and fracture model of twin-roll casting AZ31 alloy under multiaxial stress state [J]. Journal of Materials Research and Technology, 2022, 17: 2047–2058.
    [32] JONES T L, DELORME R D. Development of a ballistic specification for magnesium alloy AZ31B: ARL-TR-4664 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2008.
    [33] GSCHNEIDNER K A JR. Physical properties and interrelationships of metallic and semimetallic elements [J]. Solid State Physics, 1964, 16: 275–426.
    [34] 孙洪敏. AZ31/1060磁脉冲焊接界面成形机制数值模拟与试验研究 [D]. 太原: 太原科技大学, 2021: 32.

    SUN H M. Numerical simulation and experimental study on interface forming mechanism of AZ31/1060 magnetic pulse welding [D]. Taiyuan: Taiyuan University of Science and Technology, 2021: 32.
    [35] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390.
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  46
  • PDF下载量:  30
出版历程
  • 收稿日期:  2024-08-08
  • 修回日期:  2024-08-27
  • 录用日期:  2024-08-30
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回