高温高压对三元预混燃料爆炸特性的影响

朱源 姜根柱 王筱蓉 郭宏展 苏傲成

朱源, 姜根柱, 王筱蓉, 郭宏展, 苏傲成. 高温高压对三元预混燃料爆炸特性的影响[J]. 高压物理学报. doi: 10.11858/gywlxb.20240818
引用本文: 朱源, 姜根柱, 王筱蓉, 郭宏展, 苏傲成. 高温高压对三元预混燃料爆炸特性的影响[J]. 高压物理学报. doi: 10.11858/gywlxb.20240818
ZHU Yuan, JIANG Genzhu, WANG Xiaorong, GUO Hongzhan, SU Aocheng. Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240818
Citation: ZHU Yuan, JIANG Genzhu, WANG Xiaorong, GUO Hongzhan, SU Aocheng. Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240818

高温高压对三元预混燃料爆炸特性的影响

doi: 10.11858/gywlxb.20240818
基金项目: 国家自然科学基金(52350410458)
详细信息
    作者简介:

    朱 源(1999-),男,硕士研究生,主要从事清洁燃料爆炸特性研究. E-mail:1165130610@qq.com

    通讯作者:

    姜根柱(1979-),男,硕士,副教授,主要从事绿色替代燃料燃烧特性研究. E-mail:jianggenzhu2just@163.com

  • 中图分类号: O389; O521.9; X932

Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel

  • 摘要: 乙醇/甲烷/氢气(C2H5OH/CH4/H2)作为一种新型的替代燃料,研究其爆炸特性对于我国新能源的可持续发展具有重要意义。在不同的当量比(0.8~1.4)、初始压力(0.1、0.2和0.4 MPa)和初始温度(370、400和450 K)下,从实验和化学动力学角度分析了其对关键爆炸特性参数,如峰值爆炸压力、峰值爆炸压力上升速率、爆炸时间以及爆燃指数的影响。结果表明,爆炸特性参数在当量比为1.2~1.3之间时出现极值。峰值爆炸压力与初始压力呈线性正相关,而与初始温度呈线性负相关。增大初始压力,火焰锋面裂纹、胞化程度加深,峰值爆炸压力增大。此外,实验工况下评估的最大爆燃指数为20.83 MPa·m/s,表明预混燃料的燃烧处于相对安全水平。基元反应敏感性分析表明:爆燃反应与H和OH自由基密切相关,而R1、R8、R24、R96是影响爆炸反应强度最重要的4个基元反应。研究成果可为C2H5OH/CH4/H2三元混合燃料在实际燃烧装置中的应用、燃料安全性评估以及爆炸事故预防提供参考。

     

  • 图  实验装置示意图

    Figure  1.  Schematic diagram of the experimental device

    图  T0=400 K、p0=0.2 MPa、Ф=1.0时的pmax、(dp/dt)maxtc

    Figure  2.  Values of pmax, (dp/dt)max, and tc obtained at T0=400 K, p0=0.2 MPa, and Φ=1.0

    图  T0=450 K、p0=0.4 MPa时不同Φ下的C2H5OH/CH4/H2火焰图像

    Figure  3.  C2H5OH/CH4/H2 flame images at different Φ when T0=450 K and p0=0.4 MPa

    图  T0=450 K时不同p0Φ下的C2H5OH/CH4/H2火焰图像

    Figure  4.  C2H5OH/CH4/H2 flame images at different p0 and Φ when T0=450 K

    图  p0=0.4 MPa时不同T0Φ的C2H5OH/CH4/H2火焰图像

    Figure  5.  C2H5OH/CH4/H2 flame images at different T0 and Φ when p0=0.4 MPa

    图  当量比、初始压力和温度对爆炸压力的影响

    Figure  6.  Influence of equivalence ratio, initial pressure and temperature on explosion pressure

    图  不同初始工况下C2H5OH/CH4/H2预混燃料的峰值爆炸压力

    Figure  7.  Peak explosion pressure of C2H5OH/CH4/H2 premixed fuel under different initial conditions

    图  峰值爆炸压力随初始压力的变化规律

    Figure  8.  Relationship between peak explosion pressure and initial pressure

    图  峰值爆炸压力随初始温度的变化规律

    Figure  9.  Relationship between peak explosion pressure and initial temperature

    图  10  T0 = 450 K、p0=0.4 MPa时不同当量比下爆炸压力上升率的变化曲线

    Figure  10.  Time curves of explosion pressure rise rate under different equivalence ratio at T0=450 K, p0=0.4 MPa

    图  11  T0=450 K、Ф=1.2时不同初始压力下的爆炸压力上升率的变化曲线

    Figure  11.  Time curves of explosion pressure rise rate under different initial pressures when T0=450 K and Ф=1.2

    图  12  p0=0.4 MPa、Ф=1.2时不同初始温度下的爆炸压力上升率变化曲线

    Figure  12.  Time curves of explosion pressure rise rate under different initial temperatures when p0=0.4 MPa and Ф=1.2

    图  13  峰值爆炸压力上升率汇总

    Figure  13.  Summary of peak explosion pressure rise rate

    图  14  爆燃指数汇总

    Figure  14.  Summary of deflagration index

    图  15  爆炸时间与初始温度、初始压力的关系

    Figure  15.  Relationship between explosion time, initial temperature and initial pressure

    图  16  爆炸时间随初始压力的变化规律

    Figure  16.  Explosion time varies with the initial pressure

    图  17  以往研究中H2/CH4预混燃料层流燃烧速度的对比(H2与CH4体积分数之比为1∶4)

    Figure  17.  Comparison of laminar burning velocity of H2/CH4 premixed fuels from previous studies (The ratio of H2 and CH4 volume fraction is 1∶4)

    图  18  C2H5OH/CH4/H2预混燃料实验得到的层流燃烧速度与整合机理模拟数据的对比

    Figure  18.  Comparison of experimental laminar burning velocity and integration mechanism simulation data of C2H5OH/CH4/H2 premixed fuel

    图  19  不同当量比下的基元反应敏感性数据

    Figure  19.  Reaction sensitivity data of primitives at different equivalence ratios

    图  20  不同初始压力下的基元反应敏感性数据

    Figure  20.  Reaction sensitivity data of primitives at different initial pressures

    图  21  不同初始温度下的基元反应敏感性数据

    Figure  21.  Reaction sensitivity data of the primitives at different initial temperatures

    图  22  不同初始压力下C2H5OH/CH4/H2的关键反应路径分析

    Figure  22.  Analysis of C2H5OH/CH4/H2 critical reaction pathways under different initial pressures

    表  1  实验的初始条件

    Table  1.   Initial conditions of the experiment

    Φ p0/MPa T0/K $ {\varphi}_{{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{O}\mathrm{H}} $/% $ {\varphi}_{{\mathrm{C}\mathrm{H}}_{4}}$/% $ {\varphi}_{{\mathrm{H}}_{2}}$/%
    0.8−1.4 0.1, 0.2, 0.4 370, 400, 450 50 40 10
    下载: 导出CSV

    表  2  T0=450 K下峰值爆炸压力与初始压力的相关性系数

    Table  2.   Correlation coefficient between peak explosion pressure and initial pressure at T0=450 K

    Φ a b
    0.8 −0.039 30 4.716 11
    0.9 −0.024 41 5.268 32
    1.0 −0.006 71 5.439 43
    1.1 −0.020 74 5.788 41
    1.2 −0.009 14 5.997 85
    下载: 导出CSV

    表  3  p0=0.4 MPa下峰值爆炸压力与初始温度的相关性系数

    Table  3.   Correlation coefficient between peak explosion pressure and initial temperature at p0=0.4 MPa

    Φ c d
    0.8 3.409 94 −0.003 45
    0.9 3.588 53 −0.003 33
    1.0 4.428 85 −0.004 98
    1.1 4.585 72 −0.005 12
    1.2 4.551 11 −0.004 68
    下载: 导出CSV
  • [1] LI B L, HANEKLAUS N. The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China [J]. Energy Reports, 2022, 8(Suppl 4): 1090–1098.
    [2] 刘尚, 范钦灏, 王巍, 等. 乙醇汽油点燃压燃模式颗粒物排放特性试验 [J]. 内燃机学报, 2023, 41(1): 33–41.

    LIU S, FAN Q H, WANG W, et al. Experiment on particulate number emissions of spark ignition to compression ignition combustion mode for ethanol gasoline [J]. Transactions of Csice, 2023, 41(1): 33–41.
    [3] 刘旭, 钟汶君, 姜鹏, 等. 乙醇汽油/加氢催化生物柴油双燃料发动机着火燃烧及碳烟生成特性研究 [J]. 工程热物理学报, 2022, 43(8): 2143–2151.

    LIU X, ZHONG W J, JIANG P, et al. Study on ignition combustion and soot formation characteristics of ethanol gasoline-hydrogenated catalytic biodiesel dual fuel engine [J]. Journal of Engineering Thermophysics, 2022, 43(8): 2143–2151.
    [4] 纪常伟, 辛固, 汪硕峰, 等. 零碳及碳中和燃料内燃机应用进展 [J]. 北京工业大学学报, 2022, 48(3): 273–291. doi: 10.11936/bjutxb2021100007

    JI C W, XIN G, WANG S F, et al. Application progress of zero carbon and carbon-neutral fuel internal combustion engines [J]. Journal of Beijing University of Technology, 2022, 48(3): 273–291. doi: 10.11936/bjutxb2021100007
    [5] WANG X R, ZHANG Y, LI T, et al. Investigation of cellularization characteristics of hydrogen-methane-ethanol expanding spherical flame at elevated pressures [J]. Combustion and Flame, 2023, 255: 112866. doi: 10.1016/j.combustflame.2023.112866
    [6] WANG X R, YAN C Z, ZHANG Y, et al. Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: experimental and numerical analysis [J]. Renewable Energy, 2024, 227: 120493. doi: 10.1016/j.renene.2024.120493
    [7] LI T, WANG X R, MA Y, et al. Investigation on hydrogen/ethanol intrinsic flame instability [J]. Combustion and Flame, 2022, 241: 112064. doi: 10.1016/j.combustflame.2022.112064
    [8] 张衍, 张嘉玮, 王筱蓉. 高压下氢气-乙醇球形膨胀火焰的层流燃烧速度和火焰不稳定性研究 [J]. 新能源进展, 2023, 11(1): 69–75. doi: 10.3969/j.issn.2095-560X.2023.01.010

    ZHANG Y, ZHANG J W, WANG X R. Investigation of laminar combustion velocity and flame instability in hydrogen-ethanol spherical expansion flames under high pressures [J]. Advances in New and Renewable Energy, 2023, 11(1): 69–75. doi: 10.3969/j.issn.2095-560X.2023.01.010
    [9] BAO Y G, LI X L, XU C S, et al. Experimental and numerical study on morphological characteristics and intrinsic instability of premixed hydrogen/ethanol flames [J]. Fuel, 2024, 371: 132019. doi: 10.1016/j.fuel.2024.132019
    [10] LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. doi: 10.1016/j.fuel.2018.06.042
    [11] MOHAMMAD A, JUHANY K A. Laminar burning velocity and flame structure of DME/methane+air mixtures at elevated temperatures [J]. Fuel, 2019, 245: 105–114. doi: 10.1016/j.fuel.2019.02.085
    [12] OPPONG F, ZHONGYANG L, LI X L, et al. Investigations on explosion characteristics of ethyl acetate [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104409. doi: 10.1016/j.jlp.2021.104409
    [13] CHENG J, ZHANG B. Experimental study on the explosion characteristics of ammonia-hydrogen-air mixtures [J]. Fuel, 2024, 363: 131046. doi: 10.1016/j.fuel.2024.131046
    [14] MITU M, BRANDES E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels [J]. Fuel, 2017, 203: 460–468. doi: 10.1016/j.fuel.2017.04.124
    [15] CUI G, WANG S, LIU J G, et al. Explosion characteristics of a methane/air mixture at low initial temperatures [J]. Fuel, 2018, 234: 886–893. doi: 10.1016/j.fuel.2018.07.139
    [16] LIU C, TANG K C, HUANG C Y, et al. Effect of initial pressure on the critical characteristics and overpressure of hydrogen-air premixed gas combustion and explosion [J]. International Journal of Hydrogen Energy, 2024, 49: 311–322. doi: 10.1016/j.ijhydene.2023.07.266
    [17] SHEN X B, XIU G, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. doi: 10.1016/j.applthermaleng.2017.04.040
    [18] 马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
    [19] 张嘉玮, 张衍, 姜根柱, 等. 乙醇-氢气-空气预混燃气爆炸特性的研究 [J]. 新能源进展, 2023, 11(2): 189–196. doi: 10.3969/j.issn.2095-560X.2023.02.012

    ZHANG J W, ZHANG Y, JIANG G Z, et al. Explosion characteristics of ethanol-hydrogen-air premixed gas [J]. Advances in New and Renewable Energy, 2023, 11(2): 189–196. doi: 10.3969/j.issn.2095-560X.2023.02.012
    [20] LIU G L, WANG J, ZHENG L G, et al. Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions [J]. Energy, 2023, 276: 127607. doi: 10.1016/j.energy.2023.127607
    [21] LIU L, LUO Z M, SU B, et al. Study on the explosion characteristics and flame propagation of hydrogen-methane-air mixtures in a closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2024, 87: 105224. doi: 10.1016/j.jlp.2023.105224
    [22] LIU J J, YU D Y, LI P, et al. Characteristics of explosion hazards in methane-air mixtures diluted by hydrogen [J]. Energies, 2023, 16(18): 6416. doi: 10.3390/en16186416
    [23] CHEN Z M, WANG L, ZENG K. A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol [J]. Energy Conversion and Management, 2019, 192: 11–19. doi: 10.1016/j.enconman.2019.04.011
    [24] 刘晓龙. 掺氢内燃机燃烧特性及整车燃油经济性的数值模拟研究 [D]. 北京: 北京工业大学, 2015.

    LIU X L. Numerical investigation on combustion characteristics and vehicle fuel economy performance of hydrogen-enriched engines [D]. Beijing: Beijing University of Technology, 2015.
    [25] 吕晓辉. 乙醇掺氢燃料预混层流燃烧特性的研究 [D]. 武汉: 武汉理工大学, 2011.

    LYU X H. Study on premixed laminar combustion of hydrogen blended ethanol fuels [D]. Wuhan: Wuhan University of Technology, 2011.
    [26] 马熹群. 汽油掺氢层流预混火焰燃烧特性研究[D]. 北京: 北京理工大学, 2016.

    MA X Q. Study of burning property of gasoline surrogate and hydrogen laminar premixed flame [D]. Beijing: Beijing Institute of Technology, 2016.
    [27] XU C S, WANG Q Y, SONG Y, et al. Explosion characteristics of n-decane/hydrogen/air mixtures [J]. International Journal of Hydrogen Energy, 2022, 47(91): 38837–38848. doi: 10.1016/j.ijhydene.2022.09.048
    [28] LI H Z, XIAO H H. Experimental study on the explosion characteristics of NH3/DME/air mixtures [J]. Fuel, 2023, 352: 129069. doi: 10.1016/j.fuel.2023.129069
    [29] OPPONG F, LI X L, XU C S, et al. Investigations on methyl pentanoate-air mixtures confined explosion and cellularity [J]. Fuel, 2024, 358: 130137. doi: 10.1016/j.fuel.2023.130137
    [30] OPPONG F, XU C S, LI X L, et al. Laminar flame characteristics of 2-ethylfuran/air mixtures: experimental and kinetic modelling investigations [J]. Fuel, 2022, 307: 121785. doi: 10.1016/j.fuel.2021.121785
    [31] HU E J, TIAN H Z, ZHANG X Y, et al. Explosion characteristics of n-butanol/iso-octane-air mixtures [J]. Fuel, 2017, 188: 90–97. doi: 10.1016/j.fuel.2016.10.002
    [32] XU C S, WANG H Y, LI X L, et al. Explosion characteristics of a pyrolysis biofuel derived from rice husk [J]. Journal of Hazardous Materials, 2019, 369: 324–333. doi: 10.1016/j.jhazmat.2019.01.101
    [33] SAEED K. Determination of the explosion characteristics of methanol-air mixture in a constant volume vessel [J]. Fuel, 2017, 210: 729–737. doi: 10.1016/j.fuel.2017.09.004
    [34] MITTAL G, BURKE S M, DAVIES V A, et al. Autoignition of ethanol in a rapid compression machine [J]. Combustion and Flame, 2014, 161(5): 1164–1171. doi: 10.1016/j.combustflame.2013.11.005
    [35] OPPONG F, XU C S, ZHONGYANG L, et al. Evaluation of explosion characteristics of 2-methylfuran/air mixture [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103954. doi: 10.1016/j.jlp.2019.103954
    [36] XIANG L K, JIANG H T, REN F, et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane [J]. International Journal of Hydrogen Energy, 2020, 45(39): 20501–20514. doi: 10.1016/j.ijhydene.2019.11.040
    [37] DUAN X B, LI Y Y, LIU Y Q, et al. Dilution gas and hydrogen enrichment on the laminar flame speed and flame structure of the methane/air mixture [J]. Fuel, 2020, 281: 118794. doi: 10.1016/j.fuel.2020.118794
    [38] ECKART S, PIZZUTI L, FRITSCHE C, et al. Experimental study and proposed power correlation for laminar burning velocity of hydrogen-diluted methane with respect to pressure and temperature variation [J]. International Journal of Hydrogen Energy, 2022, 47(9): 6334–6348. doi: 10.1016/j.ijhydene.2021.11.243
    [39] BERWAL P, SOLAGAR S, KUMAR S. Experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures [J]. International Journal of Hydrogen Energy, 2022, 47(37): 16686–16697. doi: 10.1016/j.ijhydene.2022.03.155
    [40] ARAVINDAN M, PRAVEEN KUMAR G, ARULANANDAM M K, et al. Multi-objective optimization and analysis of chemical kinetics properties: exploring the impact of different hydrogen blending ratios on LPG and methane-air mixtures [J]. Energy Conversion and Management: X, 2024, 22: 100532. doi: 10.1016/j.ecmx.2024.100532
    [41] MORSY M E, YANG J F. The instability of laminar methane/hydrogen/air flames: correlation between small and large-scale explosions [J]. International Journal of Hydrogen Energy, 2022, 47(69): 29959–29970. doi: 10.1016/j.ijhydene.2022.06.289
    [42] 李祥春, 聂百胜, 杨春丽, 等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147. doi: 10.11858/gywlxb.2017.02.005

    LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147. doi: 10.11858/gywlxb.2017.02.005
    [43] 杨春丽, 刘艳, 胡玢, 等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析 [J]. 高压物理学报, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012

    YANG C L, LIU Y, HU F, et al. Effect of nitrogen and water vapor on methane-air mixture explosion elementary reaction and suppression mechanism [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012
    [44] 夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔-空气的抑爆特性 [J]. 高压物理学报, 2022, 36(6): 171–179. doi: 10.11858/gywlxb.20220580

    XIA Y, CHENG Y F, HU F F, et al. Inhibition characteristics of typical solid explosion suppressors on acetylene-air explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 171–179. doi: 10.11858/gywlxb.20220580
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  23
  • PDF下载量:  2
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-06-24
  • 录用日期:  2024-08-29
  • 网络出版日期:  2024-10-10

目录

    /

    返回文章
    返回