单轴压缩下裂隙倾角对花岗岩-混凝土力学行为及能量演化的影响

李庆文 李涵静 钟宇奇 李玲 才诗婷 刘艺伟

李庆文, 李涵静, 钟宇奇, 李玲, 才诗婷, 刘艺伟. 单轴压缩下裂隙倾角对花岗岩-混凝土力学行为及能量演化的影响[J]. 高压物理学报, 2024, 38(6): 064202. doi: 10.11858/gywlxb.20240803
引用本文: 李庆文, 李涵静, 钟宇奇, 李玲, 才诗婷, 刘艺伟. 单轴压缩下裂隙倾角对花岗岩-混凝土力学行为及能量演化的影响[J]. 高压物理学报, 2024, 38(6): 064202. doi: 10.11858/gywlxb.20240803
LI Qingwen, LI Hanjing, ZHONG Yuqi, LI Ling, CAI Shiting, LIU Yiwei. Influence of Crack Angles on the Mechanical Behavior and Energy Evolution of Granite-Concrete under Uniaxial Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064202. doi: 10.11858/gywlxb.20240803
Citation: LI Qingwen, LI Hanjing, ZHONG Yuqi, LI Ling, CAI Shiting, LIU Yiwei. Influence of Crack Angles on the Mechanical Behavior and Energy Evolution of Granite-Concrete under Uniaxial Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064202. doi: 10.11858/gywlxb.20240803

单轴压缩下裂隙倾角对花岗岩-混凝土力学行为及能量演化的影响

doi: 10.11858/gywlxb.20240803
基金项目: 辽宁省教育厅基本科研面上项目(JYTMS20230866);辽宁省自然科学基金面上项目(2023-MS-298 );辽宁省博士科研启动基金(2019-BS-120);辽宁省自然科学基金指导项目(20180550297)
详细信息
    作者简介:

    李庆文(1987-),男,博士,副教授,主要从事岩石力学、新材料与新型组合结构、离散元-有限差分跨尺度耦合数值模拟研究. E-mail:lgjzlqw@163.com

    通讯作者:

    李涵静(1999-),女,硕士研究生,主要从事计算颗粒力学研究. E-mail:1965213088@qq.com

  • 中图分类号: O346.1; O521.9; TU45

Influence of Crack Angles on the Mechanical Behavior and Energy Evolution of Granite-Concrete under Uniaxial Compression

  • 摘要: 为探究单轴压缩下不同裂隙倾角对花岗岩-混凝土组合体试件的强度及能量演化的影响,结合室内试验标定的细观参数,采用二维离散元颗粒流程序(PFC2D)对组合体试件开展了数值模拟研究。结果表明:花岗岩-混凝土的强度和变形特征受裂隙倾角影响,其强度和变形参数随裂隙倾角的增大呈逐渐增大趋势;在单轴压缩过程中,试样内部能量转化为宏观裂纹扩展,最终的破坏模式主要以拉伸失效断裂和剪切失效断裂为主;组合体试件的总能量和耗散能随裂隙倾角的增大而增大,试件破坏时总应变能大于耗散能。基于耗散能的计算,构建了损伤本构方程,当损伤因子为0.8时,试件接近极限状态,此时的能量消耗较大,显著降低了组合体试件的强度。

     

  • 图  单轴压缩试验装置

    Figure  1.  Testing machine of the uniaxial compression

    图  室内单轴压缩试验得到的应力-应变曲线

    Figure  2.  Stress-strain curves of indoor uniaxial compression tests

    图  接触模型[30]

    Figure  3.  Contact model[30]

    图  试验与数值模拟得到的应力-应变曲线及破坏形态对比

    Figure  4.  Comparison of stress-strain curves and failure modes between test and numerical simulation

    图  单裂隙花岗岩-混凝土试样的数值模型

    Figure  5.  Numerical model of granite-concrete specimen with single crack

    图  PFC2D的数值模拟结果

    Figure  6.  Numerical simulation results of PFC2D

    图  裂纹扩展路径

    Figure  7.  Propagation path of cracks

    图  一般岩石的弹性能与耗散能之间的关系[37]

    Figure  8.  Relationship between elastic energy and dissipated energy of general rock[37]

    图  不同裂隙倾角下花岗岩-混凝土试件的能量演化

    Figure  9.  Energy evolution of granite-concrete specimen under different fracture angles

    图  10  不同倾角下花岗岩-混凝土试件峰值时刻的能量演化

    Figure  10.  Energy evolution of granite-concrete specimen under different angles at the moment of peak strength

    图  11  考虑裂隙倾角的参数修正

    Figure  11.  Parameter correction considering crack dip angle

    图  12  本构模型的验证

    Figure  12.  Verification of constitutive model

    图  13  损伤因子演化曲线

    Figure  13.  Evolution curves of damage factor

    表  1  C40混凝土的配合比

    Table  1.   Mixture ratio of C40 concrete kg/m3

    CementMineral fillerFly ashSandAggregateAdmixture
    27075458608808.5
    下载: 导出CSV

    表  2  试验结果分析

    Table  2.   Analysis of test results

    Material Sample ID Compressive strength/MPa Elastic modulus/GPa
    Test data Average value Test data Average value
    Granite G-1 55.5 54.2 28.0 24.3
    G-2 55.5 22.1
    G-3 51.5 22.9
    Concrete C-1 39.4 39.3 16.1 18.7
    C-2 39.7 18.2
    C-3 38.9 21.8
    Granite-concrete GC-1 40.4 41.1 7.2 6.7
    GC-2 41.5 6.7
    GC-3 41.5 6.1
    Note: In sample ID, G represents the granite, C represents the concrete, GC denotes the granite-concrete, and 1, 2, 3 represents the sample number.
    下载: 导出CSV

    表  3  试验值与模拟值的比较

    Table  3.   Comparison between test and simulated value

    MaterialEffective modulusPeak stress
    Test/GPaSimulation/GPaError/%Test/MPaSimulation/MPaError/%
    Granite24.324.3054.255.32.0
    Concrete18.718.7039.340.12.0
    Granite-concrete6.76.7041.141.10
    下载: 导出CSV

    表  4  材料细观参数

    Table  4.   Microscopic parameters of materials

    Material Density/
    (kg·m−3)
    Tensile
    strength/MPa
    Cohesive
    strength/MPa
    Effective
    modulus/GPa
    Particle friction
    coefficient
    Stiffness
    ratio
    Friction
    angle/(°)
    Granite 2790 50 150 17.5 0.3 2.53 30
    Concrete 2360 51 50 8.0 0.2 1.33 70
    下载: 导出CSV

    表  5  界面细观参数

    Table  5.   Microscopic parameters of interfaces

    Normal stiffness/
    (N·m−1)
    Shear stiffness/
    (N·m−1)
    Cohesion/GPa Joint friction
    angle/(°)
    Frictional coefficient
    9×107 4.5×108 20 20 0.6
    下载: 导出CSV

    表  6  数值模拟方案

    Table  6.   Scheme of numerical simulation

    α/(°) Model L/mm H/mm v0/(mm·s−1) E/GPa σmax/MPa εi/10−3
    0 30 1 0.01 5.437 16.31 0.30
    30 30 1 0.01 5.872 27.60 0.47
    60 30 1 0.01 6.476 38.21 0.59
    90 30 1 0.01 6.464 42.66 0.66
    下载: 导出CSV
  • [1] FU J W, HAERI H, SARFARAZI V, et al. The shear behaviors of concrete-gypsum specimens containing double edge cracks under four-point loading conditions [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103361. doi: 10.1016/j.tafmec.2022.103361
    [2] LI D J, SHI C, RUAN H N, et al. Study on shear behavior of coral reef limestone-concrete interface [J]. Marine Georesources & Geotechnology, 2022, 40(4): 438–447. doi: 10.1080/1064119X.2021.1906365
    [3] DONG W, WU Z M, ZHANG B S, et al. Study on shear-softening constitutive law of rock-concrete interface [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4677–4694. doi: 10.1007/s00603-021-02536-6
    [4] ZHANG D C, SHE H C, XIAO T L. Influence of coplanar double fissures on failure characteristics of sandstone and fracture mechanics analysis [J]. Frontiers in Earth Science, 2023, 11: 1180636. doi: 10.3389/feart.2023.1180636
    [5] BISTA D, SAS G, JOHANSSON F, et al. Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 449–460. doi: 10.1016/j.jrmge.2020.01.001
    [6] DONG W, WU Z M, ZHOU X M, et al. An experimental study on crack propagation at rock-concrete interface using digital image correlation technique [J]. Engineering Fracture Mechanics, 2017, 171: 50–63. doi: 10.1016/j.engfracmech.2016.12.003
    [7] YANG L Y, ZHANG F, LIN C Y, et al. Experimental study on failure characteristics of rock-fiber concrete composite under compression load [J]. Structures, 2022, 44: 1863–1873. doi: 10.1016/j.istruc.2022.09.007
    [8] LI X J, LAN L J, BAI Y F, et al. Study on fracture failure mechanism and crack propagation law of granite-shotcrete composite structure [J]. Arabian Journal of Geosciences, 2022, 15(6): 464. doi: 10.1007/s12517-022-09676-1
    [9] WEI X, SHEN Y J, LI X T, et al. Influence of freeze-thaw cycles and shear rate on sandstone-concrete interfacial bond strength: experiment and degradation model [J]. Construction and Building Materials, 2022, 327: 126986. doi: 10.1016/j.conbuildmat.2022.126986
    [10] SHEN Y J, ZHANG H, ZHANG J Y, et al. Sandstone-concrete interface transition zone (ITZ) damage and debonding micromechanisms under freeze-thaw [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 133–149. doi: 10.3724/SP.J.1226.2021.20056
    [11] PAN J, SHEN Y J, YANG G S, et al. Debonding behaviors and micro-mechanism of the interface transition zone in sandstone-concrete interface in response to freeze-thaw conditions [J]. Cold Regions Science and Technology, 2021, 191: 103359. doi: 10.1016/j.coldregions.2021.103359
    [12] XIA W, CUI S A, XU L L, et al. Study on the fracture performance for rock-concrete interface in the high geothermal tunnel environment [J]. Construction and Building Materials, 2022, 347: 128568. doi: 10.1016/j.conbuildmat.2022.128568
    [13] HU Y P, WANG M N, WANG Z L, et al. Mechanical behavior and constitutive model of shotcrete-rock interface subjected to heat damage and variable temperature curing conditions [J]. Construction and Building Materials, 2020, 263: 120171. doi: 10.1016/j.conbuildmat.2020.120171
    [14] 陆文博, 晏鄂川, 邹浩, 等. 我国倾倒变形体发育规律研究 [J]. 长江科学院院报, 2017, 34(8): 111–119. doi: 10.11988/ckyyb.20160484

    LU W B, YAN E C, ZOU H, et al. Development rules of toppling deformation slopes in China [J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(8): 111–119. doi: 10.11988/ckyyb.20160484
    [15] 邓鹏海, 刘泉声, 黄兴. 隧道底板渐进破裂碎胀大变形: 一种新的底鼓机制研究 [J]. 岩土力学, 2023, 44(5): 1512–1529. doi: 10.16285/j.rsm.2022.0831

    DENG P H, LIU Q S, HUANG X. Progressive fracture and swelling deformation of tunnel floor: a new floor heave mechanism [J]. Rock and Soil Mechanics, 2023, 44(5): 1512–1529. doi: 10.16285/j.rsm.2022.0831
    [16] 李树忱, 马腾飞, 蒋宇静, 等. 深部多裂隙岩体开挖变形破坏规律模型试验研究 [J]. 岩土工程学报, 2016, 38(6): 987–995. doi: 10.11779/CJGE201606003

    LI S C, MA T F, JIANG Y J, et al. Model tests on deformation and failure laws in excavation of deep rock mass with multiple fracture sets [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 987–995. doi: 10.11779/CJGE201606003
    [17] CAO W G, TAN X, ZHANG C, et al. Constitutive model to simulate full deformation and failure process for rocks considering initial compression and residual strength behaviors [J]. Canadian Geotechnical Journal, 2019, 56(5): 649–661. doi: 10.1139/cgj-2018-0178
    [18] 李庆文, 禹萌萌, 高森林, 等. 加载速率对碳纤维布被动约束煤能量演化影响研究 [J/OL]. 煤炭学报(2023-06-08)[2024-04-26]. https://doi.org/10.13225/j.cnki.jccs.2023.0238.

    LI Q W, YU M M, GAO S L, et al. The effect of loading rate on energy evolution of coal confined passively by CFRP sheets [J/OL]. Journal of China Coal Society (2023-06-08)[2024-04-26]. https://doi.org/10.13225/j.cnki.jccs.2023.0238.
    [19] 周辉, 李震, 杨艳霜, 等. 岩石统一能量屈服准则 [J]. 岩石力学与工程学报, 2013, 32(11): 2170–2184.

    ZHOU H, LI Z, YANG Y S, et al. Unified energy yield criterion of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2170–2184.
    [20] ZHAO Y Q, LI Q S, ZHANG K, et al. Effect of fissure angle on energy evolution and failure characteristics of fractured rock under uniaxial cyclic loading [J]. Scientific Reports, 2023, 13(1): 2678. doi: 10.1038/s41598-022-26091-4
    [21] HU J, WANG H K, XIA Z G, et al. Mechanical properties and acoustic emission characteristics of two dissimilar layers of rock-like specimens with prefabricated parallel fissures [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2024, 10(1): 19. doi: 10.1007/s40948-024-00755-z
    [22] 武世岩, 黄彦华. 含弧形裂隙花岗岩裂纹扩展特征PFC模拟 [J]. 中南大学学报(自然科学版), 2023, 54(1): 169–182. doi: 10.11817/j.issn.1672-7207.2023.01.016

    WU S Y, HUANG Y H. PFC simulation on crack coalescence behavior of granite specimens containing an arc fissure [J]. Journal of Central South University (Science and Technology), 2023, 54(1): 169–182. doi: 10.11817/j.issn.1672-7207.2023.01.016
    [23] 中华人民共和国水利部. 水利水电工程岩石试验规程: SL/T 264—2020 [S]. 北京: 中国水利水电出版社, 2020.

    Ministry of Water Resources of the People’s Republic of China. Code for rock tests in water and hydropower projects: SL/T 264—2020 [S]. Beijing: China Water & Power Press, 2020.
    [24] SONG L B, WANG G, WANG X K, et al. The influence of joint inclination and opening width on fracture characteristics of granite under triaxial compression [J]. International Journal of Geomechanics, 2022, 22(5): 04022031. doi: 10.1061/(ASCE)GM.1943-5622.0002372
    [25] 李琦. 单轴压缩过程中岩石-混凝土一体两介质体声发射特性研究 [D]. 邯郸: 河北工程大学, 2018.

    LI Q. Research on acoustic emission characteristics of rock and concrete monolithic body in uniaxial compression [D]. Handan: Hebei University of Engineering, 2018.
    [26] SU C, WU Z, XU H, et al. Analysis of influencing factors of pneumatic flow enhancement of pumped concrete based on discrete element method [J]. Frontiers in Earth Science, 2022, 10: 968085. doi: 10.3389/FEART.2022.968085
    [27] 陆建友. 岩石-混凝土圆盘径向压缩条件下力学性能研究 [D]. 焦作: 河南理工大学, 2018.

    LU J Y. Study on mechanical properties of rock-concrete disc under radial compression [D]. Jiaozuo: Henan Polytechnic University, 2018.
    [28] YUE Z F, MENG F Z, ZHOU X, et al. Influence of non-persistent joint aperture and inclination angle on the shear behavior and fracture mode of solid rock and concrete material [J]. Construction and Building Materials, 2022, 316: 125892. doi: 10.1016/j.conbuildmat.2021.125892
    [29] SHANG Y H, XU L R, LI Y W. Unloading response characteristics of cross fault caverns: effect of fault angles [J]. Geotechnical and Geological Engineering, 2022, 40(3): 1061–1073. doi: 10.1007/s10706-021-01942-5
    [30] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0) [M]. Beijing: China Architecture & Building Press, 2018.
    [31] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.

    CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249.
    [32] 许尚杰, 尹小涛, 马双科, 等. 基于颗粒流的混凝土材料数值实验研究 [J]. 实验力学, 2009, 24(3): 251–258.

    XU S J, YIN X T, MA S K, et al. Numerical test study of concrete material based on particle flow [J]. Journal of Experimental Mechanics, 2009, 24(3): 251–258.
    [33] 冯一. 基于岩石细观力学的裂缝闭合机理研究 [D]. 成都: 西南石油大学, 2016.

    FENG Y. Fracture closure mechanism based on rock meso-mechanics [D]. Chengdu: Southwest Petroleum University, 2016.
    [34] 易婷, 唐建新, 王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响 [J]. 地下空间与工程学报, 2021, 17(1): 98–106, 134.

    YI T, TANG J X, WANG Y L. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 98–106, 134.
    [35] 王国艳, 于广明, 李刚, 等. 初始裂隙倾角对岩石破坏模式及峰值强度的影响 [J]. 中国矿业, 2017, 26(10): 173–176.

    WANG G Y, YU G M, LI G, et al. Influence of initial crack dip angle on failure mode and peak strength of rock [J]. China Mining Magazine, 2017, 26(10): 173–176.
    [36] 李庆文, 才诗婷, 李涵静, 等. 单裂隙岩石-混凝土组合体断裂特征颗粒流模拟 [J]. 高压物理学报, 2024, 38(5): 054202.

    LI Q W, CAI S T, LI H J, et al. Particle flow simulation of fracture characteristics of rock-concrete combination with single crack [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054202.
    [37] 王桂林, 张亮, 许明, 等. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究 [J]. 岩土工程学报, 2019, 41(4): 639–647. doi: 10.11779/CJGE201904006

    WANG G L, ZHANG L, XU M, et al. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639–647. doi: 10.11779/CJGE201904006
    [38] 李庆文, 曾杏钢, 张向东, 等. 碳纤维布层数对煤圆柱力学特性影响的细观研究 [J]. 煤炭科学技术, 2023, 51(8): 73–85. doi: 10.13199/j.cnki.cst.2022-0976

    LI Q W, ZENG X G, ZHANG X D, et al. Mesoscopic study on the effect of CFRP layers on the mechanical properties of coal circular-columns [J]. Coal Science and Technology, 2023, 51(8): 73–85. doi: 10.13199/j.cnki.cst.2022-0976
    [39] 李庆文, 高安梁, 禹萌萌, 等. 碳纤维布均匀约束下煤圆柱的损伤演化 [J]. 金属矿山, 2024(2): 104–113. doi: 10.19614/j.cnki.jsks.202402010

    LI Q W, GAO A L, YU M M, et al. Damage evolution of coal cylinder under uniform confinement of carbon fiber sheets [J]. Metal Mine, 2024(2): 104–113. doi: 10.19614/j.cnki.jsks.202402010
    [40] 尹升华, 侯永强, 杨世兴, 等. 单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析 [J]. 中南大学学报(自然科学版), 2021, 52(3): 936–947. doi: 10.11817/j.issn.1672-7207.2021.03.025

    YIN S H, HOU Y Q, YANG S X, et al. Analysis of deformation failure and energy dissipation of mixed aggregate cemented backfill during uniaxial compression [J]. Journal of Central South University (Science and Technology), 2021, 52(3): 936–947. doi: 10.11817/j.issn.1672-7207.2021.03.025
    [41] XIA B W, LI Y, HU H R, et al. Effect of crack angle on mechanical behaviors and damage evolution characteristics of sandstone under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2022, 55(11): 6567–6582. doi: 10.1007/s00603-022-03016-1
    [42] 马秋峰, 刘志河, 秦跃平, 等. 基于能量耗散理论的岩石塑性-损伤本构模型 [J]. 岩土力学, 2021, 42(5): 1210–1220. doi: 10.16285/j.rsm.2020.1091

    MA Q F, LIU Z H, QIN Y P. Rock plastic-damage constitutive model based on energy dissipation [J]. Rock and Soil Mechanics, 2021, 42(5): 1210–1220. doi: 10.16285/j.rsm.2020.1091
    [43] 张琪, 李祥春, 李彪, 等. 单轴压缩条件下煤体的宏-微观损伤破坏特征研究 [J/OL]. 采矿与安全工程学报(2023-11-03)[2024-04-26]. https://www.chinacaj.net/i,92,489849,0.html.

    ZHANG Q, LI X C, LI B, et al. Research on the damage characteristics of macro and microscopic scales of a loaded coal under uniaxial compression [J/OL]. Journal of Mining & Safety Engineering (2023-11-03)[2024-04-26]. https://www.chinacaj.net/i,92,489849,0.html.
    [44] 张慧梅, 谢祥妙, 张蒙军, 等. 真三轴应力状态下岩石损伤本构模型 [J]. 力学与实践, 2015, 37(1): 75–78. doi: 10.6052/1000-0879-13-517

    ZHANG H M, XIE X M, ZHANG M J, et al. Damage constitutive model of rock under the true triaxial confinement state [J]. Mechanics in Engineering, 2015, 37(1): 75–78. doi: 10.6052/1000-0879-13-517
    [45] 宋浩然, 李守宇, 张庆文, 等. 含水泥砂岩声发射阶段特征与损伤演化研究 [J]. 地下空间与工程学报, 2024, 20(1): 72–81.

    SONG H R, LI S Y, ZHANG Q W, et al. The acoustic emission stage characteristics and damage evolution of argillaceous siltstone [J]. Chinese Journal of Underground Space and Engineering, 2024, 20(1): 72–81.
    [46] 李庆文, 高森林, 胡露露, 等. 不同加载速率下非均质煤样能量耗散损伤本构关系 [J]. 煤炭学报, 2022, 47(Suppl 1): 90–102.

    LI Q W, GAO S L, HU L L, et al. Constitutive relation of energy dissipation damage of heterogeneous coal samples under different loading rates [J]. Journal of China Coal Society, 2022, 47(Suppl 1): 90–102.
    [47] 张超, 杨楚卿, 白允. 岩石类脆性材料损伤演化分析及其模型方法研究 [J]. 岩土力学, 2021, 42(9): 2344–2354. doi: 10.16285/j.rsm.2021.0278

    ZHANG C, YANG C Q, BAI Y. Investigation of damage evolution and its model of rock-like brittle materials [J]. Rock and Soil Mechanics, 2021, 42(9): 2344–2354. doi: 10.16285/j.rsm.2021.0278
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  67
  • PDF下载量:  21
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-05-23
  • 网络出版日期:  2024-09-02
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回