钠离子电池的平板径向压缩安全特性研究

马宇哲 杨军 曹泽阳 乔志军 阮殿波

马宇哲, 杨军, 曹泽阳, 乔志军, 阮殿波. 钠离子电池的平板径向压缩安全特性研究[J]. 高压物理学报, 2024, 38(6): 065301. doi: 10.11858/gywlxb.20240750
引用本文: 马宇哲, 杨军, 曹泽阳, 乔志军, 阮殿波. 钠离子电池的平板径向压缩安全特性研究[J]. 高压物理学报, 2024, 38(6): 065301. doi: 10.11858/gywlxb.20240750
MA Yuzhe, YANG Jun, CAO Zeyang, QIAO Zhijun, RUAN Dianbo. Study on the Safety Characteristics of Flat Plate Compression of Sodium-Ion Batteries[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 065301. doi: 10.11858/gywlxb.20240750
Citation: MA Yuzhe, YANG Jun, CAO Zeyang, QIAO Zhijun, RUAN Dianbo. Study on the Safety Characteristics of Flat Plate Compression of Sodium-Ion Batteries[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 065301. doi: 10.11858/gywlxb.20240750

钠离子电池的平板径向压缩安全特性研究

doi: 10.11858/gywlxb.20240750
基金项目: 浙江省重大科技项目(2022C01072);宁波市重大科技项目(2022Z206);宁波大学高层次人才引进项目(ZX2023000227)
详细信息
    作者简介:

    马宇哲(2001-),男,硕士研究生,主要从事钠离子电池安全性研究. E-mail:mayuzhe0523@163.com

    通讯作者:

    阮殿波(1969-),男,博士,教授,主要从事储能器件及其工程化研究. E-mail:ruandianbo@nbu.edu.cn

  • 中图分类号: O348.3; O521.9; TM911

Study on the Safety Characteristics of Flat Plate Compression of Sodium-Ion Batteries

  • 摘要: 钠离子电池因其安全性高、成本低等优势成为电动汽车储能系统的主流研究对象。在电动汽车使用过程中,电池组受到挤压载荷时有可能出现热失控,因此研究钠离子电池碰撞安全与热失控特性对其发展至关重要。为揭示钠离子电池的平板压缩安全特性,针对正极为镍铁锰酸钠(NaNi1/3Fe1/3Mn1/3O2)、负极为硬碳体系的18650型钠离子电池,搭建电池平板压缩安全特性实验平台,研究电池压缩过程中的力-电-热响应,探究钠离子电池的热失控荷电状态范围和钠离子电池的热失控临界速度范围,并分析内短路过程,探寻受损电池的二次使用界限。结果表明:圆柱形钠离子电池荷电状态在80%和90%时发生热失控,热失控临界速度介于14~15 mm/min之间,且电池压缩过程符合标准“4 阶段”过程,压缩受损圆柱形钠离子电池存在二次使用安全界限。

     

  • 图  平板压缩实验流程

    Figure  1.  Flow chart of plate compression experiment

    图  不同SOC电池的载荷温度变化情况

    Figure  2.  Variation of load temperature of different SOC SIBs

    图  电池的峰值载荷和峰值温度变化

    Figure  3.  Peak load and peak temperature variation of SIBs

    图  不同压缩速度下电池的破坏形貌及电压、载荷、温度的变化

    Figure  4.  Damage morphology, voltage, load and temperature variation of batteries at different compression velocities

    图  SIBs平板压缩热失控过程分析

    Figure  5.  Analysis of thermal runaway process of sodium batteries flat plate compression

    图  受损电池充电过程的电压-时间曲线

    Figure  6.  Voltage-time curves of charging process of damaged battery

    图  受损电池充电过程的电流-时间曲线

    Figure  7.  Current-time curves of charging process of damaged battery

    图  受损电池的放电电压-时间曲线

    Figure  8.  Discharge voltage-time curves of damaged batteries

    图  不同受损程度电池的放电容量

    Figure  9.  Discharge capacity of batteries with different degrees of damage

  • [1] 李梦. 圆柱形动力锂离子电池在机械滥用下的安全及防护研究 [D]. 太原: 太原理工大学, 2021.

    LI M. Research on safety and protection of cylindrical power lithium-ion battery under mechanical abuse [D]. Taiyuan: Taiyuan University of Technology, 2021.
    [2] 杜志明, 陈佳炜. 锂离子电池热失控危险性研究进展 [J]. 安全与环境学报, 2021, 21(4): 1523–1532. doi: 10.13637/j.issn.1009-6094.2020.0201

    DU Z M, CHEN J W. Research progress on the risks of the thermal runaway in lithium-ion batteries [J]. Journal of Safety and Environment, 2021, 21(4): 1523–1532. doi: 10.13637/j.issn.1009-6094.2020.0201
    [3] 尹丽琼, 韦安定, 韦财金. 大数据下电动汽车动力电池故障诊断技术现状与发展趋势 [J]. 时代汽车, 2023(13): 154–156. doi: 10.3969/j.issn.1672-9668.2023.13.052

    YIN L Q, WEI A D, WEI C J. Status quo and development trend of electric vehicle power battery fault diagnosis technology under big data [J]. Auto Time, 2023(13): 154–156. doi: 10.3969/j.issn.1672-9668.2023.13.052
    [4] 胡英瑛, 温兆银, 芮琨, 等. 钠电池的研究与开发现状 [J]. 储能科学与技术, 2013, 2(2): 81–90. doi: 10.3969/j.issn.2095-4239.2013.02.001

    HU Y Y, WEN Z Y, RUI K, et al. State-of-the-art research and development status of sodium batteries [J]. Energy Storage Science and Technology, 2013, 2(2): 81–90. doi: 10.3969/j.issn.2095-4239.2013.02.001
    [5] LIU Q H, ZHENG Y R, ZENG Y C, et al. Temperature instantaneous online monitoring methods of thermal runaway based on electrode process principle [J]. Surfaces and Interfaces, 2023, 42: 103326. doi: 10.1016/j.surfin.2023.103326
    [6] 杨馨蓉, 车海英, 杨轲, 等. 硬碳负极材料的热稳定性及其钠离子电池安全性能评测 [J]. 过程工程学报, 2022, 22(4): 552–560. doi: 10.12034/j.issn.1009-606X.220420

    YANG X R, CHE H Y, YANG K, et al. Evaluation of safety performance and thermal stability of hard carbon anode for sodium-ion battery [J]. The Chinese Journal of Process Engineering, 2022, 22(4): 552–560. doi: 10.12034/j.issn.1009-606X.220420
    [7] 位方林. 钠离子电池充放电过程中的热力学熵变特性研究 [D]. 郑州: 郑州大学, 2022.

    WEI F L. Research on thermodynamic entropy change characteristics during charge and discharge for sodium ion batteries [D]. Zhengzhou: Zhengzhou University, 2022.
    [8] 徐雄文, 聂阳, 涂健, 等. 普鲁士蓝正极软包钠离子电池的滥用性能 [J]. 储能科学与技术, 2022, 11(7): 2030–2039. doi: 10.19799/j.cnki.2095-4239.2021.0686

    XU X W, NIE Y, TU J, et al. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030–2039. doi: 10.19799/j.cnki.2095-4239.2021.0686
    [9] ROBINSON J B, FINEGAN D P, HEENAN T M M, et al. Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes [J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010. doi: 10.1115/1.4038518
    [10] KONDOU H, KIM J, WATANABE H. Thermal analysis on Na plating in sodium ion battery [J]. Electrochemistry, 2017, 85(10): 647–649. doi: 10.5796/electrochemistry.85.647
    [11] VELUMANI D, BANSAL A. Thermal behavior of lithium-and sodium-ion batteries: a review on heat generation, battery degradation, thermal runway-perspective and future directions [J]. Energy & Fuels, 2022, 36(23): 14000–14029. doi: 10.1021/acs.energyfuels.2c02889
    [12] PALANISAMY M, REDDY BODDU V R, SHIRAGE P M, et al. Discharge state of layered P2-type cathode reveals unsafe than charge condition in thermal runaway event for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31594–31604. doi: 10.1021/acsami.1c04482
    [13] 李威. 基于精细模型的锂离子电池变形失效研究 [D]. 北京: 清华大学, 2019.

    LI W. Study on lithium-ion battery deformation and failure based on detailed modeling [D]. Beijing: Tsinghua University, 2019.
    [14] 李梦, 柳小伟, 张舒, 等. 轴向压缩下圆柱形动力锂离子电池的性能 [J]. 高压物理学报, 2021, 35(3): 035302. doi: 10.11858/gywlxb.20200647

    LI M, LIU X W, ZHANG S, et al. Performance of cylindrical power lithium-ion battery under axial compression [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035302. doi: 10.11858/gywlxb.20200647
    [15] 苟思涛. 方形锂离子电池在机械滥用下的安全性研究 [D]. 西安: 长安大学, 2022.

    GOU S T. Study on the safety of prismatic lithium-ion battery under mechanical abuse [D]. Xi’an: Chang’an University, 2022.
    [16] 杨小龙, 罗卫, 樵燊, 等. 镍钴铝三元锂电池容量“跳水”机理研究 [J]. 湖南大学学报(自然科学版), 2023, 50(6): 171–179. doi: 10.16339/j.cnki.hdxbzkb.2023305

    YANG X L, LUO W, QIAO S, et al. Research on capacity plunge mechanisms of NCA/graphite lithium-ion batteries [J]. Journal of Hunan University (Natural Sciences), 2023, 50(6): 171–179. doi: 10.16339/j.cnki.hdxbzkb.2023305
    [17] 李晨, 刘桂林, 王春宁, 等. 热失控下锂电池内部反应综述 [J]. 电源技术, 2020, 44(12): 1851–1854. doi: 10.3969/j.issn.1002-087X.2020.12.035

    LI C, LIU G L, WANG C N, et al. Review of internal chemical reactions of Li-ion battery under thermal runaway [J]. Chinese Journal of Power Sources, 2020, 44(12): 1851–1854. doi: 10.3969/j.issn.1002-087X.2020.12.035
    [18] 范文杰, 薛鹏程, 王根伟, 等. 压缩载荷作用下锂离子电池的安全性能 [J]. 高压物理学报, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752

    FAN W J, XUE P C, WANG G W, et al. Safety performance of power lithium ion battery under compressive load [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752
    [19] ZHANG X W, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery [J]. Journal of Power Sources, 2015, 280: 47–56. doi: 10.1016/j.jpowsour.2015.01.077
    [20] NAGUIB M, ALLU S, SIMUNOVIC S, et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries [J]. Joule, 2018, 2(1): 155–167. doi: 10.1016/j.joule.2017.11.003
    [21] WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies [J]. Progress in Energy and Combustion Science, 2019, 73: 95–131. doi: 10.1016/j.pecs.2019.03.002
    [22] VILLURI R T, SINGH M, BECK Y. Experimental analysis of electric vehicle’s Li-ion battery with constant pulse and constant voltage charging method [J]. International Journal of Energy Research, 2022, 46(15): 22365–22385. doi: 10.1002/er.8708
  • 加载中
图(9)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  24
  • PDF下载量:  5
出版历程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-04-07
  • 网络出版日期:  2024-11-25
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回