模块化多孔结构的变形模式及吸能特性

黄巧巧 邓庆田 李新波 陈丽

黄巧巧, 邓庆田, 李新波, 陈丽. 模块化多孔结构的变形模式及吸能特性[J]. 高压物理学报, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737
引用本文: 黄巧巧, 邓庆田, 李新波, 陈丽. 模块化多孔结构的变形模式及吸能特性[J]. 高压物理学报, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737
HUANG Qiaoqiao, DENG Qingtian, LI Xinbo, CHEN Li. Deformation Mode and Energy Absorption of Modularized Cellular Structures[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737
Citation: HUANG Qiaoqiao, DENG Qingtian, LI Xinbo, CHEN Li. Deformation Mode and Energy Absorption of Modularized Cellular Structures[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737

模块化多孔结构的变形模式及吸能特性

doi: 10.11858/gywlxb.20240737
基金项目: 国家自然科学基金(52078419);国家自然科学基金委-中国工程物理研究院NSAF联合基金(U1930204)
详细信息
    作者简介:

    黄巧巧(2001-),女,硕士研究生,主要从事拓扑自锁结构、多孔结构变形与吸能研究. E-mail:2023112033@chd.edu.cn

    通讯作者:

    邓庆田(1980-),男,博士,副教授,主要从事多孔材料和结构力学性能研究. E-mail:dengqt@chd.edu.cn

  • 中图分类号: O347; O521.9

Deformation Mode and Energy Absorption of Modularized Cellular Structures

  • 摘要: 模块化多孔结构相较于传统一体式结构能够更加灵活地满足装配需求,研究其变形模式和吸能特性,可为多孔结构在工程中的应用提供新思路。选用具有正泊松比效应的正六边形和具有负泊松比效应的内凹形作为模块化多孔结构的填充单元,共设计了8种结构,并进行了准静态压缩实验。实验结果与有限元模拟计算结果吻合良好。研究发现:不同填充方式的结构具有不同的变形模式,其中正六边形填充表现出明显的剪切破坏带,交替填充能较好地保持单元的初始形状;2层填充多孔结构的压缩力峰值均大于3层填充结构,2层结构的比吸能也大于对应的3层填充结构;正六边形填充结构的总吸能、平均压缩力和比吸能在4种填充方式中均最小;内凹形填充结构的总吸能和平均压缩力均最大,且其比吸能保持在稳定且较高的水平。

     

  • 图  2种典型填充单元的基本尺寸(单位:mm)

    Figure  1.  Two typical infill units and their basic dimensions (Unit: mm)

    图  2层和3层正六边形、内凹形交替填充的多孔结构(单位:mm)

    Figure  2.  Infill cellular structures of two and three layers hexagon alternating with re-entrant (Unit: mm)

    图  标准试件的准静态拉伸实验

    Figure  3.  Quasi-static tensile experiments of standard specimens

    图  多孔结构试件制备及填充

    Figure  4.  Preparation of cellular specimens and infill

    图  准静态压缩实验装置

    Figure  5.  Quasi-static compression experimental device

    图  2层填充多孔结构的变形模式

    Figure  6.  Deformation modes of two layers infill cellular structures

    图  3层填充多孔结构的变形模式

    Figure  7.  Deformation modes of three layers infill cellular structures

    图  2层和3层多孔结构的压力-位移曲线

    Figure  8.  Force-displacement curves of two and three layers cellular structures

    图  几种典型的单元破坏

    Figure  9.  Typical failure diagrams of the units

    图  10  有限元模型

    Figure  10.  Finite element model

    图  11  网格无关性验证

    Figure  11.  Verification of grid independence

    图  12  2层填充多孔结构的应力云图

    Figure  12.  Stress diagrams of two layers infill cellular structures

    图  13  3层填充多孔结构的应力云图

    Figure  13.  Stress diagrams of three layers infill cellular structures

    图  14  填充多孔结构的力-位移实验与数值模拟曲线

    Figure  14.  Force-displacement experimental and simulation curves of infill cellular structures

    图  15  正六边形填充多孔结构的剪切破坏条带

    Figure  15.  Shear failure strips of hexagon infill cellular structures

    图  16  2层正六边形填充多孔结构的力-位移曲线及总能量吸收

    Figure  16.  Force-displacement curve and total energy absorption of two layers hexagon infilled cellular structure

    表  1  8种多孔结构的内部填充

    Table  1.   Internal infill of eight cellular structures

    Layer number Structural style
    H R H/R R/H
    2
    3
    下载: 导出CSV

    表  2  8种多孔结构的吸能指标

    Table  2.   Energy absorption index of eight cellular structures

    StructureLayerEa/JEsa/(J·g−1)Fp/kNFa/kN
    H2537.4216.79620.67626.871
    R730.2917.37316.63536.515
    H/R550.8436.44516.77427.542
    R/H693.7297.85317.78034.687
    H3540.0714.72815.23618.002
    R948.6127.26315.57631.620
    H/R719.2306.16413.76423.974
    R/H647.9345.39611.95721.598
    下载: 导出CSV
  • [1] BABAEI M, KIARASI F, ASEMI K, et al. Functionally graded saturated porous structures: a review [J]. Journal of Computational Applied Mechanics, 2022, 53(2): 297–308. doi: 10.22059/jcamech.2022.342710.719
    [2] YANG B S, CHEN W H, XIN R L, et al. Pomelo peel-inspired 3D-printed porous structure for efficient absorption of compressive strain energy [J]. Journal of Bionic Engineering, 2022, 19(2): 448–457. doi: 10.1007/s42235-021-00145-1
    [3] AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft [J]. Progress in Aerospace Sciences, 2021, 120: 100682. doi: 10.1016/j.paerosci.2020.100682
    [4] CHOWDHURY S, YADAIAH N, PRAKASH C, et al. Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling [J]. Journal of Materials Research and Technology, 2022, 20: 2109–2172. doi: 10.1016/j.jmrt.2022.07.121
    [5] 张欣茹, 邓庆田, 李新波, 等. 预制裂纹参数及相对密度对平面多孔结构裂纹扩展的影响 [J]. 实验力学, 2023, 38(1): 68–80. doi: 10.7520/1001-4888-22-057

    ZHANG X R, DENG Q T, LI X B, et al. Influences of prefabricated crack parameters and relative density on crack propagation in planar cellular structures [J]. Journal of Experimental Mechanics, 2023, 38(1): 68–80. doi: 10.7520/1001-4888-22-057
    [6] ZHANG X R, DENG Q T, LI X B. Effects of damage mode on crack propagation pattern in additively manufactured honeycomb cellular panel [J]. Journal of Failure Analysis and Prevention, 2023, 23(5): 2090–2104. doi: 10.1007/s11668-023-01749-x
    [7] SHIVARAM M J, ARYA S B, NAYAK J, et al. Role of porosity on electrochemical corrosion behavior of porous Ti-20Nb-5Ag alloy in simulated body fluid [J]. Materials Today: Proceedings, 2020, 33: 5257–5261. doi: 10.1016/j.matpr.2020.02.952
    [8] 李振, 丁洋, 王陶, 等. 新型并联梯度蜂窝结构的面内力学性能 [J]. 复合材料学报, 2020, 37(1): 155–163. doi: 10.13801/j.cnki.fhclxb.20190417.003

    LI Z, DING Y, WANG T, et al. In-plane crushing behaviors of honeycombs with a novel parallel graded design [J]. Acta Materiae Compositae Sinica, 2020, 37(1): 155–163. doi: 10.13801/j.cnki.fhclxb.20190417.003
    [9] MA N F, DENG Q T, LI X B. Deformation behaviors and energy absorption of composite re-entrant honeycomb cylindrical shells under axial load [J]. Materials, 2021, 14(23): 7129. doi: 10.3390/ma14237129
    [10] LI T, DENG Q T, LI X B. Energy absorption and deformation modes of several thin-walled tubes under dynamic compression [J]. Structures, 2023, 54: 890–897. doi: 10.1016/j.istruc.2023.05.099
    [11] 王雪松, 刘卫东, 刘典. 新型反四手性蜂窝结构的面内拉伸弹性 [J]. 复合材料学报, 2023, 40(8): 4849–4861. doi: 10.13801/j.cnki.fhclxb.20221107.003

    WANG X S, LIU W D, LIU D. In-plane tensile elasticity of a novel anti-tetrachiral cellular structure [J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4849–4861. doi: 10.13801/j.cnki.fhclxb.20221107.003
    [12] JIAO C X, YAN G. Design and elastic mechanical response of a novel 3D-printed hexa-chiral helical structure with negative Poisson’s ratio [J]. Materials & Design, 2021, 212: 110219. doi: 10.1016/j.matdes.2021.110219
    [13] ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs [J]. Thin-Walled Structures, 2020, 154: 106898. doi: 10.1016/j.tws.2020.106898
    [14] 尤泽华, 肖俊华, 王美芬. 弧边内凹蜂窝负泊松比结构的力学性能 [J]. 复合材料学报, 2022, 39(7): 3570–3580. doi: 10.13801/j.cnki.fhclxb.20210729.003

    YOU Z H, XIAO J H, WANG M F. Mechanical properties of arc concave honeycomb structure with negative Poisson’s ratio [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3570–3580. doi: 10.13801/j.cnki.fhclxb.20210729.003
    [15] 卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为 [J]. 复合材料学报, 2019, 36(8): 1893–1900. doi: 10.13801/j.cnki.fhclxb.20180908.001

    LU Z X, WANG H, YANG Z Y, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure [J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893–1900. doi: 10.13801/j.cnki.fhclxb.20180908.001
    [16] 杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究 [J]. 工程力学, 2022, 39(Suppl 1): 356–363. doi: 10.6052/j.issn.1000-4750.2021.05.S057

    YANG Z S, XUE Y X, LIU A R. Study on the impact dynamics of three-dimensional star-shaped structure with negative Poisson’s ratio [J]. Engineering Mechanics, 2022, 39(Suppl 1): 356–363. doi: 10.6052/j.issn.1000-4750.2021.05.S057
    [17] GUO M F, YANG H, ZHOU Y M, et al. Mechanical properties of 3D hybrid double arrow-head structure with tunable Poisson’s ratio [J]. Aerospace Science and Technology, 2021, 119: 107177. doi: 10.1016/j.ast.2021.107177
    [18] 田新宇, 邓庆田, 李新波, 等. 多孔工字梁的准静态压缩稳定性及能量吸收性能 [J]. 高压物理学报, 2023, 37(4): 044103. doi: 10.11858/gywlxb.20230657

    TIAN X Y, DENG Q T, LI X B, et al. Quasi-static compression stability and energy absorption performance of cellular I-beam [J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044103. doi: 10.11858/gywlxb.20230657
    [19] 王博, 张雄, 徐胜利. 2D周期蜂窝结构面内静动态压缩力学行为研究 [J]. 力学学报, 2009, 41(2): 274–281. doi: 10.6052/0459-1879-2009-2-2007-400

    WANG B, ZHANG X, XU S L. Mechanical behavior of 2D periodic honeycombs under in-plane uniaxial compression [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 274–281. doi: 10.6052/0459-1879-2009-2-2007-400
    [20] 龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法 [J]. 复合材料学报, 2017, 34(6): 1252–1260. doi: 10.13801/j.cnki.fhclxb.20161024.001

    LONG K, GU X G, HAN D. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect [J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1252–1260. doi: 10.13801/j.cnki.fhclxb.20161024.001
    [21] BATES S R G, FARROW I R, TRASK R S. 3D printed polyurethane honeycombs for repeated tailored energy absorption [J]. Materials & Design, 2016, 112: 172–183. doi: 10.1016/j.matdes.2016.08.062
    [22] ZHOU J, LIU H B, DEAR J P, et al. Comparison of different quasi-static loading conditions of additively manufactured composite hexagonal and auxetic cellular structures [J]. International Journal of Mechanical Sciences, 2023, 244: 108054. doi: 10.1016/j.ijmecsci.2022.108054
    [23] LI Y, CHEN Z H, XIAO D B, et al. The dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading [J]. International Journal of Impact Engineering, 2020, 137: 103442. doi: 10.1016/j.ijimpeng.2019.103442
    [24] LUO H C, REN X, ZHANG Y, et al. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression [J]. Composite Structures, 2022, 280: 114922. doi: 10.1016/j.compstruct.2021.114922
    [25] OH J H, KIM J S, NGUYEN V H, et al. Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation [J]. Composites Part B: Engineering, 2020, 186: 107817. doi: 10.1016/j.compositesb.2020.107817
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  21
  • PDF下载量:  12
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-03-22
  • 网络出版日期:  2024-11-25
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回