脉冲应力冲击下30CrMnMo钢的绝热剪切失效行为

程昊 王猛 李想 曲禹同 吴海龙 刘子禛 李博

程昊, 王猛, 李想, 曲禹同, 吴海龙, 刘子禛, 李博. 脉冲应力冲击下30CrMnMo钢的绝热剪切失效行为[J]. 高压物理学报, 2024, 38(4): 044101. doi: 10.11858/gywlxb.20230812
引用本文: 程昊, 王猛, 李想, 曲禹同, 吴海龙, 刘子禛, 李博. 脉冲应力冲击下30CrMnMo钢的绝热剪切失效行为[J]. 高压物理学报, 2024, 38(4): 044101. doi: 10.11858/gywlxb.20230812
CHENG Hao, WANG Meng, LI Xiang, QU Yutong, WU Hailong, LIU Zizhen, LI Bo. Adiabatic Shear Failure Behavior of 30CrMnMo Steel under Pulse Stress Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044101. doi: 10.11858/gywlxb.20230812
Citation: CHENG Hao, WANG Meng, LI Xiang, QU Yutong, WU Hailong, LIU Zizhen, LI Bo. Adiabatic Shear Failure Behavior of 30CrMnMo Steel under Pulse Stress Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044101. doi: 10.11858/gywlxb.20230812

脉冲应力冲击下30CrMnMo钢的绝热剪切失效行为

doi: 10.11858/gywlxb.20230812
基金项目: 辽宁省教育厅科学研究经费项目(LG202013)
详细信息
    作者简介:

    程 昊(1997-),女,硕士研究生,主要从事弹箭系统理论与技术研究. E-mail:408058737@qq.com

    通讯作者:

    王 猛(1980-),男,博士,副教授,主要从事材料冲击动力学研究. E-mail:wangm2050@163.com

  • 中图分类号: O347; TG146

Adiabatic Shear Failure Behavior of 30CrMnMo Steel under Pulse Stress Impact

  • 摘要: 为研究30CrMnMo钢在脉冲应力冲击载荷下的绝热剪切失效及演化特性,利用分离式霍普金森压杆对一种轴对称帽型试件进行冲击剪切实验,并运用LS-DYNA动力学有限元软件对不同入射脉冲应力载荷下的剪切失效演化及剪切区温度分布进行数值模拟。结果表明,帽型试件的绝热剪切失效与脉冲应力比冲量相关,对于30CrMnMo钢帽型试件,其绝热剪切失效对应的脉冲应力比冲量近似为常量。数值模拟中,当网格尺寸小于剪切带宽度时,能够有效模拟剪切带内的局部温升热点特性。绝热剪切演化表现为失稳由帽型试件剪切区拐角处启动并同时向中心传播,剪切带内外材料主要经历均匀剪切变形和失稳快速扩展2个阶段。

     

  • 图  轴对称帽型试件剖面图

    Figure  1.  Sectional view of axisymmetric cap shaped specimen

    图  30CrMnMo钢的动态真应力-真应变曲线

    Figure  2.  Dynamic true stress-strain curves of 30CrMnMo steel

    图  帽型试件SHPB冲击剪切夹持端状态

    Figure  3.  State of the SHPB impact shear clamping end of the cap shaped specimen

    图  不同长度子弹撞击产生的脉冲应力波形

    Figure  4.  Pulse stress waveforms generated by bullet impacts of different lengths

    图  不同速度冲击时帽型试件的脉冲应力比冲量

    Figure  5.  Pulse stress specific impulse of hat shaped specimens under different impact velocities

    图  采用不同网格尺寸模拟的绝热剪切带的温度云图

    Figure  6.  Temperature nephogram of simulated adiabatic shear bands with different grid sizes

    图  脉冲应力幅值-撞击速度曲线的模拟结果与实验结果的对比

    Figure  7.  Comparison of simulation and experimental results of pulse stress amplitude-impact velocity curves

    图  剪切区典型单元示意图

    Figure  8.  Schematic diagram of typical elements in the shear zone

    图  典型单元的等效应力及温度随时间变化曲线

    Figure  9.  Variations of equivalent stress and temperature of typical elements with time

    图  10  ASB的整体形貌特征

    Figure  10.  Overall morphology feature of ASB

    图  11  绝热剪切带形成过程中典型时刻的温度云图

    Figure  11.  Temperature nephogram at typical moments during the formation of adiabatic shear bands

    表  1  帽型试件的冲击剪切实验

    Table  1.   Impact shear experiment on cap shaped specimens

    Case L/mm v0/(m·s−1) σim/MPa Δt/μs ts/μs As/mm2 I/(MPa·μs·mm−2)
    1 100 43.00 900 39 34 54.6 560.4
    2 200 19.00 370 77 54.6 528.6
    3 200 24.33 506 77 61 54.6 565.3
    4 300 19.12 384 115 81 54.6 569.7
    5 300 20.12 412 115 75 54.6 565.9
    下载: 导出CSV

    表  2  采用3种网格尺寸模拟得到的剪切区

    Table  2.   Results of shear zone simulated with three grid sizes

    Mesh size/(μm×μm)Calculation time/hData file/GBCPU numberASB formation
    8×890.001808Yes
    15×151.36548Yes
    30×300.24308Yes
    下载: 导出CSV
  • [1] KURIYAMA S, MEYERS M A. Numerical modeling of the propagation of an adiabatic shear band [J]. Metallurgical Transactions A, 1986, 17(3): 443–450. doi: 10.1007/BF02643951
    [2] BONNET-LEBOUVIER A S, MOLINARI A, LIPINSKI P, et al. Analysis of the dynamic propagation of adiabatic shear bands [J]. International Journal of Solids and Structures, 2002, 39(16): 4249–4269. doi: 10.1016/S0020-7683(02)00244-5
    [3] MEDYANIK S N, LIU W K, LI S F. On criteria for dynamic adiabatic shear band propagation [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(7): 1439–1461. doi: 10.1016/j.jmps.2006.12.006
    [4] TENG X, WIERZBICKI T, COUQUE H. On the transition from adiabatic shear banding to fracture [J]. Mechanics of Materials, 2007, 39(2): 107–125. doi: 10.1016/j.mechmat.2006.03.001
    [5] 付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004
    [6] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [7] ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. doi: 10.1016/j.mechmat.2019.103102
    [8] 王财源, 余丰. 复杂应力状态下GCr15轴承钢的动态剪切及熔融特性研究 [J]. 力学季刊, 2022, 43(1): 84–92. doi: 10.15959/j.cnki.0254-0053.2022.01.009

    WANG C Y, YU F. Research on dynamic shearing and melting characteristics of GCr15 bearing steel under complex stress state [J]. Chinese Quarterly of Mechanics, 2022, 43(1): 84–92. doi: 10.15959/j.cnki.0254-0053.2022.01.009
    [9] MEYER L W, MANWARING S. Critical adiabatic shear strength of low alloyed steel under compressive loading [M]//MURR L E, STAUDHAMMER K P, MEYERS M A. Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena. New York: Marcel Dekker Inc., 1985: 657–674.
    [10] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [11] 杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001
    [12] TRESCA M H. On further applications of the flow of solids [J]. Proceedings of the Institution of Mechanical Engineers, 1878, 29(1): 301–345. doi: 10.1243/PIME_PROC_1878_029_017_02
    [13] RULE W K, JONES S E. A revised form for the Johnson-Cook strength model [J]. International Journal of Impact Engineering, 1998, 21(8): 609–624. doi: 10.1016/S0734-743X(97)00081-X
    [14] BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. doi: 10.1016/j.ijimpeng.2008.12.003
    [15] 周刚毅. TA2钛合金绝热剪切破坏特性及应力状态、晶粒度影响 [D]. 宁波: 宁波大学, 2018.

    ZHOU G Y. Adiabatic shearing behavior of TA2 titanium alloy and its influence of stress state, grain size [D]. Ningbo: Ningbo University, 2018.
    [16] LI J R, YU J L, WEI Z G. Influence of specimen geometry on adiabatic shear instability of tungsten heavy alloys [J]. International Journal of Impact Engineering, 2003, 28(3): 303–314. doi: 10.1016/S0734-743X(02)00022-2
    [17] WEI Z G, YU J L, LI J, et al. Influence of stress condition on adiabatic shear localization of tungsten heavy alloys [J]. International Journal of Impact Engineering, 2001, 26(1): 843–852.
    [18] RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading-adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. doi: 10.1016/j.mechmat.2007.08.002
    [19] WRIGHT T W, OCKENDON H. A model for fully formed shear bands [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1217–1226. doi: 10.1016/0022-5096(92)90013-R
    [20] BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  34
  • PDF下载量:  26
出版历程
  • 收稿日期:  2023-12-13
  • 修回日期:  2024-02-28
  • 网络出版日期:  2024-06-13
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回