中国绵阳研究堆高压中子衍射谱仪在材料研究中的应用

孙嘉程 陈喜平 谢雷 房雷鸣

孙嘉程, 陈喜平, 谢雷, 房雷鸣. 中国绵阳研究堆高压中子衍射谱仪在材料研究中的应用[J]. 高压物理学报, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790
引用本文: 孙嘉程, 陈喜平, 谢雷, 房雷鸣. 中国绵阳研究堆高压中子衍射谱仪在材料研究中的应用[J]. 高压物理学报, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790
SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790
Citation: SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790

中国绵阳研究堆高压中子衍射谱仪在材料研究中的应用

doi: 10.11858/gywlxb.20230790
基金项目: 国家自然科学基金(12075215,11427810)
详细信息
    作者简介:

    孙嘉程(1999-),女,硕士研究生,从事材料的高压合成与表征研究. E-mail:giasun413@163.com

    通讯作者:

    房雷鸣(1980-),男,博士,研究员,主要从事高压材料及高压中子衍射研究. E-mail:flmyaya2008@163.com

  • 中图分类号: O521.3; O711; O469

Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research

  • 摘要: 中国绵阳研究堆(CMRR)的高压中子衍射谱仪(凤凰,HPND)由中子聚焦系统、探测器系统、高压加载与集成系统等部分组成,可进行常压高低温、高压环境下的中子衍射实验,其中子衍射实验的原位室温高压加载最高可达30 GPa,高温高压加载最高可达2000 K、10 GPa。目前,凤凰谱仪已被广泛应用于材料研究领域,如过渡金属氮化物、锂离子材料、磁性材料、含能材料、铁电陶瓷等。利用常规中子衍射、高低温中子衍射以及高压中子衍射技术,获得材料的原子精确占位、磁结构、晶体结构以及相变等信息。

     

  • 图  凤凰谱仪及HP3-1500高压加载装置

    Figure  1.  FENGHUANG diffractometer and HP3-1500 high pressure device

    图  (a) 铁镍氮化合物的中子衍射精修图谱以及(b) γ-FeNi3相、(c) γ-Fe4N相、(d) ɛ-Fe3N相3种铁镍氮化合物的晶体结构[35]

    Figure  2.  (a) Rietveld-refined NPD patterns for iron-nickel nitrides; crystal structures of three iron-nickel nitrides as determined from NPD refinement, corresponding to phases (b) γ-FeNi3, (c) γ-Fe4N, and (d) ɛ-Fe3N[35]

    图  Li2.1C0.9B0.1O3的粉末X射线衍射 (a) 和粉末中子衍射 (b) 精修谱[37]

    Figure  3.  Refined powder X-ray diffraction (PXRD) (a) and PND (b) profiles of the polycrystalline samples of Li2.1C0.9B0.1O3[37]

    图  Cr2Se3的低温中子衍射谱 (a) 及得到的磁结构 (b) (虚线和实线分别对应晶体结构和磁结构单元)[39]

    Figure  4.  Neutron diffraction patterns (a) and speculative magnetic structures (b) of Cr2Se3 (The dashed and solid lines show the crystal unit cell and the magnetic unit cell, respectively.)[39]

    图  四氮唑的高压中子衍射结果[43]

    Figure  5.  High pressure neutron diffraction results of 1H-tetrazoles[43]

    图  KNN铁电陶瓷材料的室温高压中子衍射结果[45]

    Figure  6.  High pressure neutron diffraction results of KNN ferroelectric ceramics at ambient temperature[45]

    表  1  凤凰谱仪的主要参数

    Table  1.   Main instrumental parameters of FENGHUANG diffractometer

    Take-off-angle/(°) Wavelength/Å Scan angle/(°)
    94 1.59 3−153
    In-situ high pressure environment Flux at sample position/(n·cm−2·s−1) Minimum resolution/%
    > 30 GPa/room temperature,
    10 GPa/2000 K
    2.8×106 0.35
    下载: 导出CSV
  • [1] KISI E H, HOWARD C J. Applications of neutron powder diffraction [M]. Oxford: Oxford University Press, 2008.
    [2] SHULL C G, STRAUSER W A, WOLLAN E O. Neutron diffraction by paramagnetic and antiferromagnetic substances [J]. Physical Review, 1951, 83(2): 333–345. doi: 10.1103/PhysRev.83.333
    [3] GUTHRIE M, BOEHLER R, TULK C A, et al. Neutron diffraction observations of interstitial protons in dense ice [J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10552–10556. doi: 10.1073/pnas.1309277110
    [4] 孙光爱, 刘栋, 龚建, 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(9): 092009.

    SUN G A, LIU D, GONG J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(9): 092009.
    [5] SUN G A, ZHANG C S, CHEN B, et al. A new operating neutron scattering facility CMRR in China [J]. Neutron News, 2016, 27(4): 21–26. doi: 10.1080/10448632.2016.1233018
    [6] XIE L, CHEN X P, FANG L M, et al. Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 31–35.
    [7] XIA Y H, LI H, CAO X F, et al. Upgrade of Xuanwu: a dual-mode neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1042: 167452.
    [8] ZHANG W J, CUI J R, WANG S S, et al. Deforming lanthanum trihydride for superionic conduction [J]. Nature, 2023, 616(7955): 73–76. doi: 10.1038/s41586-023-05815-0
    [9] FU Z Q, CHEN X F, NIE H C, et al. Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3 [J]. Nature Communications, 2022, 13(1): 1390. doi: 10.1038/s41467-022-29079-w
    [10] LI T Y, LIU C, SHI P, et al. High-performance strain of lead-free relaxor-ferroelectric piezoceramics by the morphotropic phase boundary modification [J]. Advanced Functional Materials, 2022, 32(32): 2202307. doi: 10.1002/adfm.202202307
    [11] ZHU L, WANG Y W, CHEN J C, et al. Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites [J]. Science Advances, 2022, 8(11): eabj7698. doi: 10.1126/sciadv.abj7698
    [12] FANG L M, CHEN X P, XIE L, et al. The neutron diffraction experiments under high pressure and high temperature on FENGHUANG diffractometer at CMRR [J]. Nuclear Analysis, 2022, 1(3): 100023. doi: 10.1016/j.nucana.2022.100023
    [13] 房雷鸣, 陈喜平, 谢雷, 等. CMRR中子科学平台的高压中子衍射技术及应用 [J]. 高压物理学报, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588

    FANG L M, CHEN X P, XIE L, et al. High pressure neutron diffraction technology and applications at CMRR [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
    [14] BULL C L, FUNNELL N P, TUCKER M G, et al. PEARL: the high pressure neutron powder diffractometer at ISIS [J]. High Pressure Research, 2016, 36: 493–511. doi: 10.1080/08957959.2016.1214730
    [15] BESSON J M, NELMES R J, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180/181: 907–910. doi: 10.1016/0921-4526(92)90505-M
    [16] HATTORI T, SANO-FURUKAWA A, ARIMA H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 55–67.
    [17] ANDERSEN K H, ARGYRIOU D N, JACKSON A J, et al. The instrument suite of the European Spallation Source [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 957: 163402.
    [18] BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197
    [19] MCWHAN D B, BLOCH D, PARISOT G. Apparatus for neutron diffraction at high pressure [J]. Review of Scientific Instruments, 2003, 45(5): 643–646.
    [20] KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350
    [21] LE GODEC Y, DOVE M T, REDFERN S A T, et al. Recent developments using the paris-edinburgh cell for neutron diffraction at high pressure and high temperature and some applications [J]. High Pressure Research, 2003, 23(3): 281–287. doi: 10.1080/0895795032000102496
    [22] GUTHRIE M. Future directions in high-pressure neutron diffraction [J]. Journal of Physics: Condensed Matter, 2015, 27(15): 153201. doi: 10.1088/0953-8984/27/15/153201
    [23] FANG L M, WANG Y, CHEN X P, et al. A pressure calibration method for a portable wide-access “panoramic” cell [J]. Chinese Physics B, 2014, 23(11): 110701. doi: 10.1088/1674-1056/23/11/110701
    [24] 房雷鸣, 陈喜平, 谢雷, 等. 吉帕压力下原位中子衍射技术及其在铁中的应用 [J]. 高压物理学报, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001

    FANG L M, CHEN X P, XIE L, et al. High pressure in-situ neutron diffraction under gigapascal of iron [J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001
    [25] NI X L, FANG L M, LI X, et al. Neutron diffraction of large-volume samples at high pressure using compact opposed-anvil cells [J]. Chinese Physics Letters, 2018, 35: 040701. doi: 10.1088/0256-307X/35/4/040701
    [26] XIANG C J, HU Q W, WANG Q, et al. The design of 2/8-type high-pressure cell applied to in situ neutron diffraction [J]. Chinese Physics B, 2019, 28(7): 070701. doi: 10.1088/1674-1056/28/7/070701
    [27] 史钰, 陈喜平, 谢雷, 等. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179

    SHI Y, CHEN X P, XIE L, et al. High-pressure neutron diffraction techniques based on Paris-Edingburgh press [J]. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
    [28] HU Q W, FANG L M, LI Q, et al. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in situ neutron diffraction [J]. High Pressure Research, 2019, 39(4): 655–665. doi: 10.1080/08957959.2019.1666841
    [29] 江明全, 李欣, 房雷鸣, 等. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证 [J]. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832

    JIANG M Q, LI X, FANG L M, et al. Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press [J]. Acta Physica Sinica, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [30] 杨功章, 谢雷, 陈喜平, 等. 巴黎-爱丁堡压机中子衍射高压下温度加载实验 [J]. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419

    YANG G Z, XIE L, CHEN X P, et al. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction [J]. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [31] 高上攀, 雷力, 胡启威, 等. 三元铁基金属氮化物的高压复分解反应合成 [J]. 高压物理学报, 2016, 30(4): 265–270.

    GAO S P, LEI L, HU Q W, et al. High-pressure solid-state metathesis synthesis of ternary iron-based metal nitrides [J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265–270.
    [32] ZHOU X F, XU W W, GUI Z G, et al. Polar nitride perovskite LaWN(3–δ) with orthorhombic structure [J]. Advanced Science, 2023, 10(19): 2205479. doi: 10.1002/advs.202205479
    [33] ZHOU X F, GU C, SONG G Z, et al. Synthesis, crystal structures, mechanical properties, and formation mechanisms of cubic tungsten nitrides [J]. Chemistry of Materials, 2022, 34(20): 9261–9269. doi: 10.1021/acs.chemmater.2c02563
    [34] LEI L, ZHANG L L, GAO S P, et al. Neutron diffraction study of the structural and magnetic properties of ε-Fe3N1.098 and ε-Fe2.322Co0.678N0.888 [J]. Journal of Alloys and Compounds, 2018, 752: 99–105. doi: 10.1016/j.jallcom.2018.04.143
    [35] WU B B, LEI L, ZHANG F, et al. Pressure-induced disordering of site occupation in iron-nickel nitrides [J]. Matter and Radiation at Extremes, 2021, 6(3): 038401. doi: 10.1063/5.0040041
    [36] HU Q W, FANG L M, MA S G, et al. Observation of specific optical phonon modes dominating Li ion diffusion in γ-LiAlO2 ceramic [J]. Ceramics International, 2021, 47(13): 17980–17985. doi: 10.1016/j.ceramint.2021.03.112
    [37] FENG X Y, WANG C H, PAN H J, et al. Interstitial Li+ and Li+ migrations in the Li2+ xC1– xB xO3 solid electrolyte [J]. The Journal of Physical Chemistry C, 2022, 126(43): 18466–18474. doi: 10.1021/acs.jpcc.2c05189
    [38] AHMAD A S, LIANG Y, DONG M, et al. Pressure-driven switching of magnetism in layered CrCl3 [J]. Nanoscale, 2020, 12(45): 22935–22944. doi: 10.1039/D0NR04325G
    [39] ZHU X K, LIU H, LIU L, et al. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets [J]. Chemistry of Materials, 2021, 33: 3851–3858. doi: 10.1021/acs.chemmater.1c01222
    [40] PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1993, 440(1909): 399–419.
    [41] LI H, LI Y, BAI L F, et al. Acceleration of δ- to β-HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
    [42] LI H, BAI L F, CHEN X P, et al. Strain-induced structural change and mechanical properties of 1,3,5-triamino-2,4,6-trinitrobenzene probed by neutron diffraction [J]. Bulletin of Materials Science, 2021, 44(1): 53. doi: 10.1007/s12034-020-02339-5
    [43] LIU Y, DU H F, FANG L M, et al. Pressure-driven electronic phase transition in the high-pressure phase of nitrogen-rich 1H-tetrazoles [J]. RSC Advances, 2021, 11(35): 21507–21513. doi: 10.1039/D1RA00522G
    [44] ZHOU Z Y, GAO Z P, XIONG Z W, et al. Giant power density from BiFeO3-based ferroelectric ceramics by shock compression [J]. Applied Physics Letters, 2022, 121(11): 113903. doi: 10.1063/5.0102102
    [45] ZHOU Z Y, FANG L M, XIONG Z W, et al. Phase transition of potassium sodium niobate under high pressures [J]. Applied Physics Letters, 2023, 123(1): 012904. doi: 10.1063/5.0159971
    [46] LI Q Z, YANG X X, PENG F, et al. Elasticity, mechanical and thermal properties of submicron h-AlN: in-situ high pressure ultrasonic study [J]. Journal of the European Ceramic Society, 2021, 41(9): 4788–4793. doi: 10.1016/j.jeurceramsoc.2021.03.056
    [47] LIANG H, FANG L M, GUAN S X, et al. Insights into the bond behavior and mechanical properties of hafnium carbide under high pressure and high temperature [J]. Inorganic Chemistry, 2021, 60(2): 515–524. doi: 10.1021/acs.inorgchem.0c02800
    [48] XU C W, LI Y, INOUE T, et al. Elastic properties of Mg-phase D at high pressure [J]. High Pressure Research, 2021, 41(3): 233–246. doi: 10.1080/08957959.2021.1954177
    [49] HE R Q, FANG L M, HAN T X, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at high pressure [J]. Journal of the European Ceramic Society, 2022, 42(13): 5220–5228. doi: 10.1016/j.jeurceramsoc.2022.06.039
    [50] CHENG Y S, HE R Q, XIA Y H, et al. Sound velocities, and mechanical and electronic properties of the intermetallic compound CeAl2 at high pressure [J]. Physical Review B, 2022, 105(6): 064106.
    [51] LI Q Z, CHEN X P, XIE L, et al. In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press [J]. Chinese Physics B, 2022, 31(6): 060702. doi: 10.1088/1674-1056/ac4902
    [52] HE R Q, FANG L M, CHEN X P, et al. Experimental study of covalent Cr3C2 with high ionicity: sound velocities, elasticity, and mechanical properties under high pressure [J]. Scripta Materialia, 2023, 224: 115146. doi: 10.1016/j.scriptamat.2022.115146
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  33
  • PDF下载量:  32
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2023-11-17
  • 网络出版日期:  2024-05-21
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回