高温高应变率下G550冷弯钢的动态力学行为

严吉涛 陈文飞 张浩 尤建 史超铭 蒋昊成 朱珏

严吉涛, 陈文飞, 张浩, 尤建, 史超铭, 蒋昊成, 朱珏. 高温高应变率下G550冷弯钢的动态力学行为[J]. 高压物理学报, 2023, 37(2): 024101. doi: 10.11858/gywlxb.20220705
引用本文: 严吉涛, 陈文飞, 张浩, 尤建, 史超铭, 蒋昊成, 朱珏. 高温高应变率下G550冷弯钢的动态力学行为[J]. 高压物理学报, 2023, 37(2): 024101. doi: 10.11858/gywlxb.20220705
YAN Jitao, CHEN Wenfei, ZHANG Hao, YOU Jian, SHI Chaoming, JIANG Haocheng, ZHU Jue. Dynamic Mechanical Behavior of G550 Cold-Formed Steel under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024101. doi: 10.11858/gywlxb.20220705
Citation: YAN Jitao, CHEN Wenfei, ZHANG Hao, YOU Jian, SHI Chaoming, JIANG Haocheng, ZHU Jue. Dynamic Mechanical Behavior of G550 Cold-Formed Steel under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024101. doi: 10.11858/gywlxb.20220705

高温高应变率下G550冷弯钢的动态力学行为

doi: 10.11858/gywlxb.20220705
基金项目: 国家自然科学基金(11972203,11572162)
详细信息
    作者简介:

    严吉涛(1997-),男,硕士研究生,主要从事冷弯钢结构研究. E-mail:1127503562@qq.com

    通讯作者:

    朱 珏(1979-),女,博士,教授,主要从事冷弯钢结构研究. E-mail:zhujue@nbu.edu.cn

  • 中图分类号: O347; TG142

Dynamic Mechanical Behavior of G550 Cold-Formed Steel under High Temperature and High Strain Rate

  • 摘要: 为研究G550冷弯钢在高温和高应变率下的动态力学性能,采用高温同步控制霍普金森拉杆装置,开展了不同温度下的高应变率拉伸试验,并在高速液压拉伸试验机上进行了室温下的中应变率拉伸试验。通过获得的应力-应变曲线,得到了材料的本构模型,结合微观形貌分析,探究了温度和应变率对流变应力的影响。结果表明:G550冷弯钢具有明显的应变率强化和温度软化效应。在特定的高应变率范围内(1000~1500 s−1),温度对流变应力的影响大于应变率。基于温度软化系数随温度变化的特征,提出了G550冷弯钢的修正Johnson-Cook本构模型。该模型可以较好地描述G550冷弯钢在高温和高应变率下的动态力学行为,从而为G550冷弯钢在高温、爆炸冲击相关的有限元仿真提供参考。

     

  • 图  试样尺寸及实物(单位:mm)

    Figure  1.  Dimension of specimen and physical drawing (Unit: mm)

    图  SHTB装置示意图

    Figure  2.  Schematic diagram of the SHTB device

    图  高温SHTB试验试样(单位:mm)

    Figure  3.  Specimen used in high-temperature SHTB test (Unit: mm)

    图  具有凹凸连接件形式的分离式夹具

    Figure  4.  Separate clamp of the concave-convex connector

    图  高温同步控制SHTB试验装置示意图

    Figure  5.  Schematic diagram of the high-temperature synchronous control SHTB

    图  室温中应变率下G550冷弯钢的真应力-应变曲线

    Figure  6.  True stress-strain curves of G550 cold-formed steel at room temperature and medium strain rate

    图  室温高应变率下G550冷弯钢的真应力-应变曲线

    Figure  7.  True stress-strain curves of G550 cold-formed steel at room temperature and high strain rate

    图  高温高应变率下G550冷弯钢的真应力-应变曲线

    Figure  8.  True stress-strain curves of G550 cold-formed steel at high temperature and high strain rate

    图  25~500 ℃下G550冷弯钢的应变率敏感性因子

    Figure  9.  Strain rate sensitivity factor of G550 cold-formed steel at 25−500 ℃

    图  10  25~500 ℃下1000和1500 s−1对应的流变应力

    Figure  10.  Flow stress corresponding to 1000 and 1500 s−1 at 25−500 ℃

    图  11  200~500 ℃、1000和1500 s−1下温度敏感性因子与真应变的关系

    Figure  11.  Relationships between temperature sensitivity factor and true strain under 1000 and 1500 s−1 at 200−500 ℃

    图  12  1000和1500 s−1下平均温度敏感性因子与温度的关系

    Figure  12.  Relationships between the average temperature sensitivity factor and temperature under 1000 and 1500 s−1

    图  13  1500 s−1、不同温度下G550冷弯钢断口的微观形貌

    Figure  13.  Micromorphology of fracture of G550 cold-formed steel under 1500 s−1 at different temperatures

    图  14  25 ℃、不同应变率下G550冷弯钢断口的微观形貌

    Figure  14.  Micromorphology of fracture of G550 cold-formed steel under different strain rates at 25 ℃

    图  15  25 ℃、100 s−1下G550冷弯钢应力-应变曲线中的0.2%塑性应变

    Figure  15.  0.2% plastic strain of stress-strain curve for G550 cold-formed steel under 100 s−1 at 25 ℃

    图  16  25 ℃、100 s−1下G550冷弯钢应力-应变曲线强化段的拟合

    Figure  16.  Fitting of strengthening section of stress-strain curve for G550 cold-formed steel under 100 s−1 at 25 ℃

    图  17  25 ℃、不同应变率下G550冷弯钢应力-应变曲线强化段的拟合

    Figure  17.  Fitting of strengthening section of stress-strain curve for G550 cold-formed steel under different strain rates at 25 ℃

    图  18  m与温度的关系

    Figure  18.  Relationship between m and temperature

    图  19  1000~1500 s−1、200~500 ℃下修正本构模型与高温SHTB试验结果比较

    Figure  19.  Comparison of modified constitutive model and high-temperature SHTB test data under 1000−1500 s−1 and 200−500 ℃

    表  1  G550冷弯钢的化学组成

    Table  1.   Chemical element of G550 cold-formed steel %

    CSiMnPSFe
    0.0800.0110.3900.0200.011Balance
    下载: 导出CSV

    表  2  1000~1500 s−1、200~500 ℃下修正本构模型的平均相对误差和相关系数

    Table  2.   Mean relative error and correlation coefficient of modified constitutive under 1000−1500 s−1 and 200−500 ℃

    $\dot{ { \varepsilon } }$/s−1${\eta {_{ {\text{MRE} } } }}$/% ${\eta {_{\text{R} } }}$
    200 ℃300 ℃400 ℃500 ℃200 ℃300 ℃400 ℃500 ℃
    10003.83.12.85.9 0.97780.98270.98400.9639
    15002.96.18.92.50.98360.96270.94280.9861
    下载: 导出CSV
  • [1] WANG W, WANG Y P, YANG J C, et al. Investigation on air blast resistance of POZD-coated composite steel plates: experiment and numerical analysis [J]. Composites Part B: Engineering, 2022, 237: 109858. doi: 10.1016/j.compositesb.2022.109858
    [2] XING Z, KUCUKLER M, GARDNER L. Local buckling of stainless steel Ⅰ-sections in fire: finite element modelling and design [J]. Thin-Walled Structures, 2021, 161: 107486. doi: 10.1016/j.tws.2021.107486
    [3] 杨智程, 刘龙飞, 刘炼煌, 等. 外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响 [J]. 高压物理学报, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506

    YANG Z C, LIU L F, LIU L H, et al. Effect of surface roughness on shear band behavior of 45 steel cylindrical shell under external explosion load [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506
    [4] KE L, LIU K, SHA Y Y, et al. Blast responses of steel stiffened panels subjected to plane shock waves [J]. Thin-Walled Structures, 2021, 166: 107933. doi: 10.1016/j.tws.2021.107933
    [5] KUMAR W, SHARMA U K, SHOME M. Mechanical properties of conventional structural steel and fire-resistant steel at elevated temperatures [J]. Journal of Constructional Steel Research, 2021, 181: 106615. doi: 10.1016/j.jcsr.2021.106615
    [6] 韩亚威, 杨璐, 彭磊, 等. 高温高应变率下LY315钢材动态力学性能研究 [J]. 建筑结构学报, 2023, 44(1): 319–326. doi: 10.14006/j.jzjgxb.2021.0478

    HAN Y W, YANG L, PENG L, et al. Study on dynamic mechanical behavior of LY315 steel at elevated temperature and high strain rate [J]. Journal of Building Structures, 2023, 44(1): 319–326. doi: 10.14006/j.jzjgxb.2021.0478
    [7] 孙涛. 低屈服点钢的动态本构关系及其抗爆吸能性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

    SUN T. Study of low yield point steel’s dynamic constitutive relationship and its performance on explosion energy absorption [D]. Harbin: Harbin Institute of Technology, 2011.
    [8] 郭立波. 低屈服点钢的动态本构模型及抗爆性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.

    GUO L B. Research on low yield point steel’s dynamic constitutive model and its explosive performance [D]. Harbin: Harbin Institute of Technology, 2012.
    [9] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158, 172. doi: 10.13465/j.cnki.jvs.2014.09.028

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158, 172. doi: 10.13465/j.cnki.jvs.2014.09.028
    [10] 于文静, 史健勇, 赵金城. Q345钢材动态力学性能研究 [J]. 建筑结构, 2011, 41(3): 28–30, 63. doi: 10.19701/j.jzjg.2011.03.007

    YU W J, SHI J Y, ZHAO J C. Research of dynamic mechanical behavior of Q345 steel [J]. Building Structure, 2011, 41(3): 28–30, 63. doi: 10.19701/j.jzjg.2011.03.007
    [11] 刘禹昕, 朱涛, 肖守讷, 等. 轨道车辆SUS304不锈钢材料动态力学性能与本构模型修正 [J]. 机械强度, 2022, 44(1): 74–80. doi: 10.16579/j.issn.1001.9669.2022.01.010

    LIU Y X, ZHU T, XIAO S N, et al. Dynamic mechanical properties and constitutive model modification of SUS304 stainless steel used in carbodies of trains [J]. Journal of Mechanical Strength, 2022, 44(1): 74–80. doi: 10.16579/j.issn.1001.9669.2022.01.010
    [12] 张继林, 罗文翠, 贾海深, 等. 高应变率下06Cr19Ni10奥氏体不锈钢Johnson-Cook本构模型研究 [J]. 钢铁钒钛, 2022, 43(4): 158–166. doi: 10.7513/j.issn.1004-7638.2022.04.024

    ZHANG J L, LUO W C, JIA H S, et al. Research on Johnson-Cook constitutive model of 06Cr19Ni10 austenitic stainless steel at high strain rate [J]. Iron Steel Vanadium Titanium, 2022, 43(4): 158–166. doi: 10.7513/j.issn.1004-7638.2022.04.024
    [13] 张子凌, 岑志波, 蒋磊, 等. 冲击荷载下C型G550冷弯钢的断裂机理研究 [J]. 宁波大学学报(理工版), 2022, 35(1): 90–97. doi: 10.3969/j.issn.1001-5132.2022.01.014

    ZHANG Z L, CEN Z B, JIANG L, et al. Fracture mechanism of G550 channel cold-formed steel under impact load [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(1): 90–97. doi: 10.3969/j.issn.1001-5132.2022.01.014
    [14] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. doi: 10.11883/1001-1455(2005)04-0368-06

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. doi: 10.11883/1001-1455(2005)04-0368-06
    [15] 李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. doi: 10.11857/j.issn.1674-5124.2018.10.006

    LI S K, HU W J, XU W F, et al. Research progress on SHTB experiment technique at elevated temperature [J]. China Measurement & Test, 2018, 44(10): 35–42. doi: 10.11857/j.issn.1674-5124.2018.10.006
    [16] LI Y L, GUO Y Z, HU H T, et al. A critical assessment of high-temperature dynamic mechanical testing of metals [J]. International Journal of Impact Engineering, 2009, 36(2): 177–184. doi: 10.1016/j.ijimpeng.2008.05.004
    [17] HANG W, WEI L Q, DEBELA T T, et al. Crystallographic orientation effect on the polishing behavior of LiTaO3 single crystal and its correlation with strain rate sensitivity [J]. Ceramics International, 2022, 48(6): 7766–7777. doi: 10.1016/j.ceramint.2021.11.324
    [18] LEE W S, LIN C F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures [J]. Materials Science and Engineering: A, 1998, 241(1/2): 48–59. doi: 10.1016/S0921-5093(97)00471-1
    [19] JOHNSTON W G, GILMAN J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals [J]. Journal of Applied Physics, 1959, 30(2): 129–144. doi: 10.1063/1.1735121
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [21] 汪家炜. 高温高应变率下G550冷弯钢的本构关系研究 [D]. 宁波: 宁波大学, 2021.

    WANG J W. Study on constitutive relationship of G550 cold-formed steel at high temperature and high strain rate [D]. Ningbo: Ningbo University, 2021.
    [22] 刘鸿文. 材料力学 (Ⅰ) [M]. 5版. 北京: 高等教育出版社, 2011.

    LIU H W. Mechanics of materials (Ⅰ) [M]. 5th ed. Beijing: Higher Education Press, 2011.
    [23] 杨觉先. 金属塑性变形物理基础 [M]. 北京: 冶金工业出版社, 1986.

    YANG J X. Fundamentals of metal plastic physical deformation [M]. Beijing: Metallurgical Industry Press, 1986.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  72
  • PDF下载量:  45
出版历程
  • 收稿日期:  2022-12-08
  • 修回日期:  2022-12-28
  • 网络出版日期:  2023-04-04
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回