Numerical Study of the Data Processing Methods in SHPB Experiments

ZHANG Jun-Hui SHANG Bing

张军徽, 尚兵. 基于数值模拟的SHPB实验数据处理方法[J]. 高压物理学报, 2016, 30(3): 213-220. doi: 10.11858/gywlxb.2016.03.006
引用本文: 张军徽, 尚兵. 基于数值模拟的SHPB实验数据处理方法[J]. 高压物理学报, 2016, 30(3): 213-220. doi: 10.11858/gywlxb.2016.03.006
ZHANG Jun-Hui, SHANG Bing. Numerical Study of the Data Processing Methods in SHPB Experiments[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 213-220. doi: 10.11858/gywlxb.2016.03.006
Citation: ZHANG Jun-Hui, SHANG Bing. Numerical Study of the Data Processing Methods in SHPB Experiments[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 213-220. doi: 10.11858/gywlxb.2016.03.006

Numerical Study of the Data Processing Methods in SHPB Experiments

doi: 10.11858/gywlxb.2016.03.006
Funds: 

National Natural Science Foundation of China 11572001

More Information
    Author Bio:

    ZHANG Jun-Hui(1978—), male, Doctor, lecturer, major in solid mechanics.E-mail:jasonstina@gmail.com

    Corresponding author: SHANG Bing(1979—), male, Doctor, lecturer, major in impact mechanics.E-mail:shang@mail.ustc.edu.cn
  • 摘要: 在分离式霍普金森压杆(SHPB)实验中,可以精确测得加载试件边界上的应力和速度。然而,基于这些测量结果得到一条精确的应力应变曲线有一定难度。根据SHPB实验技术的原理,有3组公式可以处理实验数据,并且3组公式都对波头的选择敏感。 由于波动效应的影响以及选择波头的误差,3种方法得到的应力-应变曲线缺乏一致性。 为了解决正确对齐波头的问题,编写了三波耦合法的数据处理程序。 该方法基于动量守恒,可以得到更可靠的应力-应变曲线。 为了证明该方法的正确性,进行SHPB的数值模拟实验。 结果显示,利用这种方法可以得到唯一的应力-应变曲线。 这种方法可以避免对齐波头时的误差,而传统的两波法或三波法则不能。

     

  • Figure  1.  The schematic diagram of a SHPB setup

    Figure  2.  Loading pressure pulse

    Figure  3.  Strain histories of points B and E in a numerical SHPB test

    4a.  The waves and their relative positions

    4b.  The stress-strain curves obtained from Fig. 4(a)

    5a.  The waves and their relative positions

    5b.  The stress-strain curves obtained from Fig. 5(a)

    6a.  The waves and their relative positions

    6b.  The stress-strain curves obtained from Fig. 6(a)

    Figure  7.  Comparison of stress-strain curves

  • [1] TAI Y S.Uniaxial compression tests at various loading rates for reactive powder concrete[J].Theor Appl Fract Mech, 2009.52(1):14-21. doi: 10.1016/j.tafmec.2009.06.001
    [2] SONG B, CHEN W N, LUK V.Impact compressive response of dry sand[J].Mech Mater, 2009, 41(6):777-785. doi: 10.1016/j.mechmat.2009.01.003
    [3] SHI B, ATTIA M H.Evaluation criteria of the constitutive law formulation for the metal-cutting process[J].J Eng Manufact, 2010, 224(B9):1313-1328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b66a24d0728817b8d988a1843fe5f86
    [4] LEE O S, HWANG S W, CHOI H B, et al.Dynamic deformation of aluminum alloys at high temperature by using SHPB techniques[C]//9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading.Brussels, Belgium, 2009: 26-32.
    [5] LEE O S, LEE J Y, KIM G H, et al.High strain-rate deformation of composite materials using a split Hopkinson bar technique[J].Key Eng Mater, 2000, 183:307-312. http://www.scientific.net/KEM.183-187.307
    [6] TRAUTMANN A, SIVIOUR C R, WALLEY S M, et al.Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar[J].Int J Impact Eng, 2005, 31(5):523-544. doi: 10.1016/j.ijimpeng.2004.02.007
    [7] SHAZLY M, PRAKASH V, LERCH B A.High strain-rate behavior of ice under uniaxial compression[J].Int J Solids Struct, 2009, 46(6):1499-1515. doi: 10.1016/j.ijsolstr.2008.11.020
    [8] GRAY G T Ⅲ.Classic split-Hopkinson pressure bar technique.Mechanical testing and evaluation[M].Novelty, OH:ASM, 2000:8-14.
    [9] WANG L L, ZHU J, HU S S.An analysis of stress uniformity for concrete-like specimens during SHPB tests[J].Int J Impact Eng, 2009, 36(1):61-72. doi: 10.1016/j.ijimpeng.2008.04.007
    [10] 尚兵, 胡时胜, 姜锡权.金属材料SHPB实验数据处理的三波校核法[J].爆炸与冲击, 2010(4):429-432. http://d.old.wanfangdata.com.cn/Periodical/bzycj201004016

    SHANG B, HU S S, JIANG X Q.A three-wave coupling method for data treatment in SHPB experiments with metal samples[J].Explosion and Shock Waves, 2010, 30(4):429-432. http://d.old.wanfangdata.com.cn/Periodical/bzycj201004016
    [11] FREW D J, FORRESTAL M J, CHEN W.Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J].Exp Mech, 2002, 42(1):93-106. doi: 10.1007/BF02411056
    [12] FREW D J, FORRESTAL M J, CHEN W.A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J].Exp Mech, 2001, 41(1):40-46. doi: 10.1007/BF02323102
    [13] LI Q M, MENG H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].Int J Solids Struct, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [14] HUA Z, ZHU W H, WANG G D.The study of numerical character for femtosecond pulse shaping[J].Chinese Physics, 2007, 16(11):3429-3433. doi: 10.1088/1009-1963/16/11/047
    [15] CHEN W, SONG B.Split Hopkinson (Kolsky) bar:Desing, testing and applications[M].New York:Springer, 2011:22-36.
  • 加载中
图(10)
计量
  • 文章访问数:  7141
  • HTML全文浏览量:  3086
  • PDF下载量:  184
出版历程
  • 收稿日期:  2015-10-12
  • 修回日期:  2016-01-18

目录

    /

    返回文章
    返回