高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究

刘培玲 任瑞林 包亚莉 宁红梅 王晓兰 李彦杰

刘培玲, 任瑞林, 包亚莉, 宁红梅, 王晓兰, 李彦杰. 高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究[J]. 高压物理学报, 2014, 28(2): 247-256. doi: 10.11858/gywlxb.2014.02.018
引用本文: 刘培玲, 任瑞林, 包亚莉, 宁红梅, 王晓兰, 李彦杰. 高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究[J]. 高压物理学报, 2014, 28(2): 247-256. doi: 10.11858/gywlxb.2014.02.018
LIU Pei-Ling, REN Rui-Ling, BAO Ya-Li, NING Hong-Mei, WANG Xiao-Lan, LI Yan-Jie. Effect of High Hydrostatic Pressure as a Physical Modification Method on Waxy Maize Starch Gelatinization and Retrogradation[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 247-256. doi: 10.11858/gywlxb.2014.02.018
Citation: LIU Pei-Ling, REN Rui-Ling, BAO Ya-Li, NING Hong-Mei, WANG Xiao-Lan, LI Yan-Jie. Effect of High Hydrostatic Pressure as a Physical Modification Method on Waxy Maize Starch Gelatinization and Retrogradation[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 247-256. doi: 10.11858/gywlxb.2014.02.018

高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究

doi: 10.11858/gywlxb.2014.02.018
基金项目: 国家自然科学基金项目(21006043)
详细信息
    作者简介:

    刘培玲(1980—),女,博士,主要从事淀粉及其衍生物的研究.E-mail:lpl1023@126.com

  • 中图分类号: O521.9

Effect of High Hydrostatic Pressure as a Physical Modification Method on Waxy Maize Starch Gelatinization and Retrogradation

  • 摘要: 采用高静压技术(HHP)作为物理变性方法处理糯玉米淀粉,考察高静压力对糯玉米淀粉糊化及重结晶的影响。采用偏光显微镜及扫描电子显微镜观测处理后的淀粉颗粒的形态变化,激光粒度分析仪用于记录淀粉颗粒的粒度分布及变化规律;利用红外光谱技术分析可能发生的微观二级结构变化,结合X射线衍射曲线及DSC差热分析曲线,验证淀粉颗粒内部结构的变化。结果表明:300 MPa的高静压对淀粉具有压缩作用,使其粒度减小,结晶度提高,起始糊化温度、糊化焓值增加;450 MPa高静压处理后,淀粉的结晶结构几乎完全被破坏,糊化度达到95%,膨胀度为57.07%,并以此验证了HHP处理会导致淀粉颗粒发生有限膨胀;600 MPa高静压处理后,淀粉颗粒发生重结晶现象,表现为典型的多峰、宽峰DSC曲线,结晶度增加。综合本研究及其他研究成果,提出“3个发展阶段”的HHP对糯玉米淀粉颗粒微观结构变化的新机制,包括:颗粒被压缩、内部结晶结构解体及颗粒解体并重新排序阶段。

     

  • 图  不同压力下糯玉米淀粉的普通光学显微镜观察图(正常光源)

    Figure  1.  Light micrographs of waxy maize starch with 50% starch concentration under different pressures (Bright light)

    图  不同压力下糯玉米淀粉的普通光学显微镜观察图(偏振光源,放大倍数为400)

    Figure  2.  Light micrographs of waxy maize starch with 50% starch concentration under different pressures (Polarized light, magnification:400)

    图  不同压力下糯玉米淀粉的扫描电子显微镜图(放大倍数为1 500)

    Figure  3.  Scanning electron micrographs of waxy maize starch with 50% starch concentration under different pressures (Magnification:1 500)

    图  不同压力下糯玉米淀粉的扫描电子显微镜图(放大倍数为5 000)

    Figure  4.  Scanning electron micrographs of waxy maize starch with 50% starch concentration under different pressures (Magnification:5 000)

    图  不同高静压处理后糯玉米淀粉颗粒的粒径分布

    Figure  5.  Granularity distributions of waxy maize starch after different levels of HHP treatment

    图  不同高静压处理后糯玉米淀粉的红外吸收光谱图

    Figure  6.  FTIR spectra of waxy maize starch after different levels of HHP treatment

    图  不同高静压处理后糯玉米淀粉的X射线衍射图

    Figure  7.  X-diffraction spectra of waxy maize starch after different levels of HHP treatment

    图  不同高静压处理后糯玉米淀粉的DSC图

    Figure  8.  DSC spectra of waxy maize starch after different levels of HHP treatment

    表  1  不同高静压对糯玉米淀粉颗粒分布的影响

    Table  1.   Parameters of particle size distribution for native and HHP modified starch

    Sample Mean/(μm) Particle distribution/(%) dspan CV/(%) DS/(%)
    < 10 μm 10~20 μm 20~40 μm 40~70 μm >70 μm
    Native 28.08±2.09ab 10.20±1.68a 32.54±4.33b 34.70±2.26b 18.50±3.25b 3.79±0.43a 1.99±0.11a 66.85±2.90a 0.00±0.00a
    300 MPa 18.70±5.32a 22.65±2.05d 53.55±4.60c 17.20±0.99a 3.15±1.76a 3.43±0.84a 2.22±1.03b 82.35±9.27a 23.19±2.19b
    450 MPa 29.14±2.72b 17.55±1.06c 40.35± 2.33b 20.75±0.78a 10.40±0.85a 10.79±3.27a 3.70±0.61b 105.00±5.66a 57.07±8.46c
    600 MPa 34.13±2.28b 13.10±0.14b 21.55±1.34a 34.80±1.84b 21.55±0.92b 8.98±2.15a 2.20±0.14b 80.55±3.46a 20.49±3.01b
    Note:(1) All values were mean values of triplicate determinations±standard deviations;
    (2) Values sharing the same uppercase letter within a line were not significantly different(P<0.05);
    (3) Mean:De Brouckere diameter;dspan:Measurement of the width of size distribution, the narrower the distribution, the smaller the dspan became; CV:Volumetric concentration; DS:Swelling degree,DS=(CV-CV Native)/CV Native.
    下载: 导出CSV

    表  2  糯玉米淀粉在不同压力处理后的热力学参数

    Table  2.   Thermal properties of waxy corn starch under various HHP conditions

    Sample To/(℃) Tp/(℃) Tp/(℃) ΔHgel/(J/g) p R/(℃)
    Native 99.4±0.4b 107.5±0.5c 119.5±0.9b 216.5±1.8b 26.7±0.1b 16.2±0.2b
    300 MPa 99.9±0.0b 106.4±0.4b 112.6±1.1a 225.6±1.0c 34.7±3.4c 12.9±1.7a
    450 MPa 84.4±0.4a 103.6±0.3a 122.7±0.1c 34.6±0.8a 1.8±0.0a 38.5±0.1d
    600 MPa 105.7±0.4c 116.3±0.4d 126.8±1.9d 793.4±5.1d 74.5±0.7d 21.3±0.7c
    Note:(1) All values were mean values of triplicate determinations±standard deviations;
    (2) Values sharing the same uppercase letter within a line were not significantly different(P<0.05);
    (3) To:Onset temperature; Tp:Peak temperature;Tc:Conclusion temperature;ΔHgel:Enthalpy of gela-tinization; R:Temperature range for gelatinization.
    下载: 导出CSV
  • [1] Farr D. High pressure technology in the food industry[J]. Trends Food Sci Tech, 1990, 1: 14-17. doi: 10.1016/0924-2244(90)90004-I
    [2] Mertens B, Knorr D. Development of nonthermal processes for food preservation[J]. Food Technol, 1992, 46(5): 124-133. http://ci.nii.ac.jp/naid/80006500922
    [3] Farkas D F, Hoover D G. High pressure processing: kinetics of microbial inactivation for alternative food processing technologies[J]. J Food Sci, 2000(Suppl): 47-64. http://www.mendeley.com/catalog/kinetics-microbial-inactivation-alternative-food-processing-technologies-high/
    [4] Meyer R S, Cooper K L, Knorr D, et al. High-pressure sterilization of foods[J]. Food Technol, 2000, 54(11): 67-72.
    [5] Butz P, Tauscher B. Emerging technologies: Chemical aspects[J]. Food Res Int, 2002, 35(2): 279-284. http://www.sciencedirect.com/science/article/pii/S0963996901001971
    [6] 刘培玲, 张甫生, 白云飞, 等.高静压对淀粉结构及糊化性质的影响[J].高压物理学报. 2010, 24(6): 472-480.

    Liu P L, Zhang F S, Bai Y F, et al. Effect of high hydrostatic pressure on starch structure and gelatinization[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 472-480.
    [7] Stute R, Klingler R W, Boguslawski S, et al. Effects of high pressures treatment on starches[J]. Starch-Stärke, 1996, 48(11/12): 399-408. http://ci.nii.ac.jp/naid/80009417610
    [8] Stolt M, Oinonen S, Autio K. Effect of high pressure on the physical properties of barley starch[J]. Innovat Food Sci Emerg Tech, 2001, 1(3): 167-175. http://europepmc.org/abstract/AGR/IND23291646
    [9] Liu Y, Selomulyo V O, Zhou W. Effect of high pressure on some physicochemical properties of several native starches[J]. J Food Eng, 2008, 88(1): 126-136. doi: 10.1016/j.jfoodeng.2008.02.001
    [10] Rubens P, Heremans K. Pressure-temperature gelatinisation phase diagram of starch: An in situ fourier transform infrared study[J]. Biopolymers, 2000, 54(7): 524-530. doi: 10.1002/1097-0282(200012)54:7<524::AID-BIP50>3.0.CO;2-Y
    [11] Douzals J, Marechal P, Coquille J, et al. Microscopic study of starch gelatinization under high hydrostatic pressure[J]. J Agric Food Chem, 1996, 44(6): 1403-1408. doi: 10.1021/jf950239c
    [12] Kudla E, Tomasik P. The modification of starch by high pressure. Part Ⅱ: Compression of starch with additives[J]. Starch-Stärke, 1992, 44(7): 253-259. doi: 10.1002/star.19920440704
    [13] Onwulata C, Elchediak E. Starches and fibers treated by dynamic pulsed pressure[J]. Food Res Int, 2000, 33(5): 367-374. doi: 10.1016/S0963-9969(00)00057-0
    [14] 陆大雷, 王德成, 景立权, 等.基肥配比和拔节期追施氮肥对糯玉米淀粉胶凝和回生特性的影响[J].作物学报, 2009, 35(5): 867-874. http://www.cnki.com.cn/Article/CJFDTotal-XBZW200905019.htm

    Lu D L, Wang D C, Jing L Q, et al. Starch gelatinization and retrogradation properties under different basic fertilizer regimes and nitrogen topdressing at jointing stage of waxy maize[J]. Acta Agronomica Sinica, 2009, 35(5): 867-874. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XBZW200905019.htm
    [15] Sandhu K S, Singh N. Some properties of corn starches Ⅱ: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties[J]. Food Chem, 2007, 101(4): 1499-1507. doi: 10.1016/j.foodchem.2006.01.060
    [16] Imberty A, Buléon A, Tran V, et al. Recent advances in knowledge of starch structure[J]. Starch-Stärke, 1991, 43(10): 375-384. doi: 10.1002/star.19910431002
    [17] Singh N, Chawla D, Singh J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch[J]. Food Chem, 2004, 86(4): 601-608. doi: 10.1016/j.foodchem.2003.10.008
    [18] Stolt M, Stoforos N G, Taoukis P S, et al. Evaluation and modeling of rheological properties of high pressure waxy maize starch dispersion[J]. J Food Eng, 1999, 40(4): 293-298. doi: 10.1016/S0260-8774(99)00069-2
    [19] Baszczak W, Valverde S, Fornal J. Effect of high pressure on the structure of potato starch[J]. Carbohyd Polym, 2005, 59(3): 377-383. doi: 10.1016/j.carbpol.2004.10.008
    [20] Capron I, Robert P, Colonna P, et al. Starch in rubbery and glassy states by FTIR spectroscopy[J]. Carbohydrate Polymers, 2007, 68(2): 249-259. doi: 10.1016/j.carbpol.2006.12.015
    [21] van Soest J J G, de Wit D, Tournois H, et al, Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy[J]. Starch-Stärke, 1994, 46(12): 453-457. doi: 10.1002/star.19940461202
    [22] Cael J J, Koenig J L, Blackwell J. Infrared and Raman Spectroscopy of carbohydrates. Part Ⅵ: Normal coordinate analysis of V-amylose[J]. Biopolymers, 1975, 14(9): 1885-1903. doi: 10.1002/bip.1975.360140909
    [23] Sevenou O, Hill S E, Farhat I A, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy[J]. Int J Bio Macromol, 2002, 31(1): 79-85. http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_JJ029246142.aspx
    [24] Capron I, Robert P, Colonna P, et al. Starch in rubbery and glassy states by FTIR spectroscopy[J]. Carbohyd Polym, 2007, 68(2): 249-259. doi: 10.1016/j.carbpol.2006.12.015
    [25] Tester R F, Debon S J J. Annealing of starch-A review[J]. Int J Bio Macromol, 2000, 27(1): 1-12. doi: 10.1016/S0141-8130(99)00121-X
    [26] Jayakody L, Hoover R. The effect of lintnerization on cereal starch granules[J]. Food Res Int, 2002, 35(7): 665-680. doi: 10.1016/S0963-9969(01)00204-6
    [27] Kawai K, Fukami K, Yamamoto K, et al. Effects of treatment pressure, holding time, and starch content on gelatinisation and retrogradation properties of potato starch-water mixtures treated with high hydrostatic pressure[J]. Carbohyd Polym, 2007, 69(3): 590-596. doi: 10.1016/j.carbpol.2007.01.015
    [28] Seow C C, Thevamalar K. Internal plasticization of granular rice starch by hydroxypropylation: Effects on phase transitions associated with gelatinization[J]. Starch-Stärke, 1993, 45(3): 85-88. doi: 10.1002/star.19930450303
    [29] Miles M J, Morris V J, Orford P D, et al. The roles of amylase and amylopectin in the gelation and retrogradation of starch. Carbohyd Polym, 1985, 135(2): 271-281.
    [30] Orford P D, Ring S G, Carroll V, et al. The effect of concentration and botanical source on the gelation and retrogradation of starch[J]. J Sci Food Agr, 1987, 39(2): 169-177. doi: 10.1002/jsfa.2740390210
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  7053
  • HTML全文浏览量:  2244
  • PDF下载量:  574
出版历程
  • 收稿日期:  2012-01-16
  • 修回日期:  2013-01-16

目录

    /

    返回文章
    返回