First-Principles Investigations on Phase Transition of ZrN under External Pressure
-
摘要: 利用基于密度泛函理论的赝势平面波方法,研究了面心立方(fcc)和体心立方(bcc)结构ZrN的平衡态性质以及不同压力下的弹性性质, 计算了fcc和bcc结构ZrN的焓-压关系,讨论了其相对稳定性。通过对总能、焓-压关系、弹性性质以及声子色散关系的分析,推测fcc结构到bcc结构的相变发生在205~235 GPa之间。Abstract: Using a plane-wave pseudo-potential density functional theory method, the equilibrium and elastic properties of fcc and bcc ZrN structures under different pressures were studied.The relationship between enthalpy and pressure of fcc and bcc structures was also investigated, and their relative stability was discussed.From the analysis of the relationship between the total energy, enthalpy with pressure, elastic properties and the phonon spectra, conclusion is found that transformation from the fcc structural phase to bcc structural phase occurs at 205-235 GPa.
-
Key words:
- external pressure /
- ab-initio /
- ZrN /
- elastic constant /
- phonon
-
表 1 零压下ZrN平衡态的晶格常数
Table 1. Lattice constant of the equilibrium state of ZrN at zero pressure
表 2 零压下fcc-ZrN的弹性常数(C11、C12、C44),剪切模量(G),体弹模量(B)和杨氏模量(E)
Table 2. The elastic constants (C11, C12, C44), the shear modulus (G), the bulk modulus (B) and the Young's modulus (E) of fcc-ZrN at zero pressure
表 3 压力下fcc-ZrN的力学常数
Table 3. Mechanical constants of fcc-ZrN at external pressures
Pressure/(GPa) C11/(GPa) C12/(GPa) C44/(GPa) G/(GPa) B/(GPa) 0 683.41 104.87 162.83 231.57 259.25 10 772.24 139.42 187.63 316.41 350.36 20 866.51 146.07 192.17 360.22 386.22 30 956.66 151.64 198.51 402.51 419.98 40 1 043.79 156.83 203.74 443.48 452.48 50 1 127.87 161.05 208.65 483.41 483.32 100 1 519.18 175.22 220.73 671.98 623.21 150 1 871.94 179.96 222.39 845.99 743.95 200 2 153.34 201.60 213.63 975.87 852.18 210 2 279.34 168.52 214.42 1 055.41 872.13 220 2 316.33 179.85 216.26 1 068.24 892.01 表 4 压力下bcc-ZrN的力学常数
Table 4. Mechanical constants of bcc-ZrN at external pressures
Pressure/(GPa) C11/(GPa) C12/(GPa) C44/(GPa) G/(GPa) B/(GPa) 0 583.22 156.40 54.49 213.41 298.67 50 830.78 300.76 175.28 265.01 477.43 100 1 021.35 425.79 290.81 297.78 624.31 150 1 180.43 538.95 411.40 320.74 752.78 200 1 315.92 643.98 528.94 335.97 867.96 250 1 434.26 741.30 645.66 346.48 972.29 300 1 539.82 830.98 758.66 354.42 1 067.26 350 1 633.78 913.92 874.67 359.93 1 153.87 -
[1] 刘永杰. ZrN薄膜的制备与特性研究[D].阜新: 辽宁工程技术大学, 2002: 12.Liu Y J. The preparation and properties of ZrN films[D]. Fuxing: Liaoning Engineering Technology University, 2002: 12. (in Chinese) [2] 徐晓明. TiN/ZrN纳米多层膜的制备及其力学性能的研究[D].大连: 大连理工大学, 2006, 12.Xu X M. Fabrication and mechanical properties of TiN/ZrN nano-multilayers[D]. Dalian: Dalian University of Technology, 2006: 12. (in Chinese) [3] 李广泽. TiN/ZrN纳米多层膜的微结构与力学性能[D].上海: 上海交通大学, 2010: 1.Li G Z. Microstructure and mechanical properties of TiN/ZrN nano-multilayers[D]. Shanghai: Shanghai Jiaotong University, 2010: 1. (in Chinese) [4] 李成明, 孙晓军, 张增毅, 等. ZrN及其多层膜的性质和耐腐蚀性能[J].材料热处理学报, 2003, 24(4): 55-58, 84.Li C M, Sun X J, Zhang Z Y, et al. Properties and corrosion-resistant of ZrN and ZrN/TiN multilayer films[J]. Transactions of Materials and Heat Treatment, 2003, 24(4): 55-58, 84. (in Chinese) [5] Kresse G, Hafner J. Ab initio Hellmann-Feynman molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1993, 156-158(2): 956-960. [6] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-Amorphous-semiconductor transition in germanium[J]. Phys Rev B, 1994, 49: 14251. doi: 10.1103/PhysRevB.49.14251 [7] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6: 15-50. doi: 10.1016/0927-0256(96)00008-0 [8] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54: 11169. doi: 10.1103/PhysRevB.54.11169 [9] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59: 1758. [10] Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids[J]. Phys Rev Lett, 1987, 58(18): 1861-1864. doi: 10.1103/PhysRevLett.58.1861 [11] Baroni S, Corso A D, Gironcoli S D, et al. First-principles codes for computational crystallography in the Quantum-ESPRESSO package[J]. Z Kristallogr, 2005, 220: 574-579. [12] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46: 6671. doi: 10.1103/PhysRevB.46.6671 [13] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41: 7892. doi: 10.1103/PhysRevB.41.7892 [14] Saha B, Acharya J, Sands T D, et al. Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: A first-principles study[J]. J Appl Phys, 2010, 107(3): 033715. doi: 10.1063/1.3291117 [15] Parlinski K, Li Z Q, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2[J]. Phys Rev Lett, 1978, 78: 4063. [16] Hao A M, Zhou T J, Zhu Yan, et al. First-principles investigations on electronic, elastic and thermodynamic properties of ZrC and ZrN under high pressure[J]. Mater Chem Phys, 2011, 129(1/2): 99-104. [17] Liu A Y, Cohen M L. Prediction of new low compressibility solids[J]. Science, 1989, 245(4920): 841-842. doi: 10.1126/science.245.4920.841 [18] Kim J O, Achenbach J D, Mirkarimi P B, et al. Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy[J]. J Appl Phys, 1992, 72: 1805. doi: 10.1063/1.351651 [19] Marlo M, Milman V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals[J]. Phys Rev B, 2002, 62: 2899. [20] Sinko G V, Smirnow N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. J Phys: Condens Matter, 2002, 14: 6989. doi: 10.1088/0953-8984/14/29/301 [21] 李宇恒, 胡社军, 曾鹏, 等. ZrN系列薄膜的研究进展[J].工具技术, 2007, 41: 7-12.Li Y H, Hu S J, Zeng P, et al. Development of research in ZrN series film[J]. Tool technology, 2007, 41: 7-12. (in Chinese) [22] Isaev E I, Simak S I, Abrikosov I, et al. Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study[J]. J Appl Phys, 2007, 101: 123519. doi: 10.1063/1.2747230 [23] Chen X J, Struzhkin V V, Kung S, et al. Pressure-induced phonon frequency shifts in transition-metal nitrides[J]. Phys Rev B, 2004, 70: 014501. -

下载: