C2H2-O2-Ar 混合气体爆轰特征参数研究

张博 白春华

张博, 白春华. C2H2-O2-Ar 混合气体爆轰特征参数研究[J]. 高压物理学报, 2013, 27(2): 287-291. doi: 10.11858/gywlxb.2013.02.017
引用本文: 张博, 白春华. C2H2-O2-Ar 混合气体爆轰特征参数研究[J]. 高压物理学报, 2013, 27(2): 287-291. doi: 10.11858/gywlxb.2013.02.017
ZHANG Bo, BAI Chun-Hua. Investigation on the Characteristic Detonation Parameters of C2H2-O2-Ar Mixtures[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 287-291. doi: 10.11858/gywlxb.2013.02.017
Citation: ZHANG Bo, BAI Chun-Hua. Investigation on the Characteristic Detonation Parameters of C2H2-O2-Ar Mixtures[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 287-291. doi: 10.11858/gywlxb.2013.02.017

C2H2-O2-Ar 混合气体爆轰特征参数研究

doi: 10.11858/gywlxb.2013.02.017
详细信息
    通讯作者:

    张博 E-mail:zhangb@live.cn

Investigation on the Characteristic Detonation Parameters of C2H2-O2-Ar Mixtures

  • 摘要: 通过实验对C2H2-O2-Ar 混合气体的临界起爆能量和爆轰临界管径进行测量,基于临界起爆能量计算爆炸长度,分析爆炸长度与爆轰胞格尺寸及临界管径之间的规律,并对各种物质临界起爆能量与诱导区长度的关系进行了研究。结果表明:C2H2-O2混合气体,其爆炸长度与胞格尺寸之间的关系为R0=26,加入50%和70%氩气稀释的混合物,两者的关系分别为R0=37.3和R0=54.8;C2H2-O2-Ar 混合气体爆炸长度与爆轰临界管径之间的关系为R0=2DC;对于70%浓度氩气稀释的C2H2-O2混合气体,其爆轰波具有稳定的一维ZND结构,临界起爆能量正比于诱导区长度的3次方。

     

  • Zhang B, Kamenskihs V, Ng H D, et al. Direct blast initiation of spherical gaseous detonation in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265-2271.
    Radulescu M I, Ng H D, Lee J H S, et al. The effect of argon dilution on the stability of acetylene-oxygen detonations [J]. Proceedings of the Combustion Institute, 2002, 29(2): 2825-2831.
    Lee J H S. Initiation of gaseous detonation [J]. Ann Rev Phys Chem, 1977, 28: 75-104.
    Lee J H S. Dynamic parameters of gaseous detonations [J]. Ann Rev Fluid Mech, 1984, 16: 311-336.
    Radulescu M I, Higgins A J, Lee J H S, et al. On the explosion length invariance in direct initiation of detonation [J]. Proc Combust Inst, 2000, 28(1): 637-644.
    Matsui H, Lee J H. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures [J]. Symposium (International) on Combustion, 1979, 17(1): 1269-1280.
    Kamenskihs V, Ng H D, Lee J H S. Measurement of critical energy for direct initiation of spherical detonations in high-pressure H2-O2 mixtures [J]. Combust Flame, 2010, 157(9): 1795-1799.
    Kaneshige M, Shepherd J E. Detonation database, FM97-8 [R]. USA: Explosion Dynamics Laboratory, 1997.
    Radulescu M I. The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes [D]. Montreal: McGill University, 2003.
    Mitrofanov V V, Soloukhin R I. The diffraction of multifront detonation waves [J]. Sov Phys Dokl, 1965, 9(12): 1055.
    Edwards D H, Hooper G, Morgan J M. An experimental investigation of the direct initiation of spherical detonations [J]. Acta Astronautica, 1976, 3(1/2): 117-130.
    Zel'dovich Y B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases [J]. Sov Phys Tech Phys, 1957, 1: 1689-1713.
    Lee J H S, Radulescu M I. On the hydrodynamic thickness of cellular detonations [J]. Combustion, Explosion, Shock Waves, 2005, 41(6): 745-765.
    Kee R J, Rupley F M, Miller J A. Chemkin-Ⅱ: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, SAND89-8009. UC-401 [R]. USA: Sandia National Laboratories, 1989.
    Konnov A A. Detailed reaction mechanism for small hydrocarbons combustions: Project-in-progress on the world wide web [EB/OL]. http: //homepages. Vub. Ac. be/akonnov/.
  • 加载中
计量
  • 文章访问数:  7013
  • HTML全文浏览量:  420
  • PDF下载量:  408
出版历程
  • 收稿日期:  2011-04-07
  • 修回日期:  2011-08-04
  • 刊出日期:  2013-04-15

目录

    /

    返回文章
    返回