激光驱动薄膜产生等离子体射流的条件分析

李牧 孙承纬 赵剑衡 罗振雄 钟杰

李牧, 孙承纬, 赵剑衡, 罗振雄, 钟杰. 激光驱动薄膜产生等离子体射流的条件分析[J]. 高压物理学报, 2011, 25(4): 351-358 . doi: 10.11858/gywlxb.2011.04.011
引用本文: 李牧, 孙承纬, 赵剑衡, 罗振雄, 钟杰. 激光驱动薄膜产生等离子体射流的条件分析[J]. 高压物理学报, 2011, 25(4): 351-358 . doi: 10.11858/gywlxb.2011.04.011
LI Mu, SUN Cheng-Wei, ZHAO Jian-Heng, LUO Zhen-Xiong, ZHONG Jie. Conditions Analysis of Laser-Driven Plasma Jet[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 351-358 . doi: 10.11858/gywlxb.2011.04.011
Citation: LI Mu, SUN Cheng-Wei, ZHAO Jian-Heng, LUO Zhen-Xiong, ZHONG Jie. Conditions Analysis of Laser-Driven Plasma Jet[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 351-358 . doi: 10.11858/gywlxb.2011.04.011

激光驱动薄膜产生等离子体射流的条件分析

doi: 10.11858/gywlxb.2011.04.011
详细信息
    通讯作者:

    李牧

Conditions Analysis of Laser-Driven Plasma Jet

More Information
    Corresponding author: LI Mu
  • 摘要: 以聚乙烯薄膜材料为研究对象,从实验物态方程出发,对强激光驱动薄膜材料时影响激光在薄膜后表面形成等离子体射流的主要因素,包括激光强度、波长、脉宽、气库膜材料及厚度,进行了理论和数值分析。研究表明,到达薄膜后表面的冲击波强度足够高时,能够产生气态或等离子体射流,否则卸载过程仍然为凝聚态;对于聚乙烯材料,形成等离子体射流的基本条件是到达薄膜后表面的冲击波强度达到约80 GPa以上;采用短波长、较高功率密度、较长激光脉宽的激光驱动具有低汽化温度、低电离阈值的薄靶,更容易实现等离子体射流。

     

  • Anisimov S I, Prokhorov A M, Fortov V E. Application of High-Power Lasers to Study Matter at Ultrahigh Pressures [J]. Sov Phys Usp, 1984, 27(3): 181-205.
    More R M. Laser-Driven Shockwave Experiments at Extreme High Pressures [A]//Schwarz H J, Hora H, Lubin M J, et al. Laser Interaction and Related Plasma Phenomena [M]. New York: Plenum Publishing Corporation, 1981: 253-276.
    Anisimov S I, Luk'yanchuk B S. Selected Problems of Laser Ablation Theory [J]. Physics-Uspekhi, 2002, 45(3): 293-324.
    Sun C W, Lu Q S, Fan Z X, et al. Laser Irradiation Effect [M]. Beijing: National Defence Industry Press, 2002. (in Chinese)
    孙承纬, 陆启生, 范正修, 等. 激光辐照效应 [M]. 北京: 国防工业出版社, 2002.
    Eliezer S. The Interaction of High-Power Lasers with Plasmas [M]. Philadelphia: Institute of Physics Publishing, 2002.
    Gregory C D, Howe J, Loupias B, et al. Astrophysical Jet Experiments with Colliding Laser-Produced Plasmas [J]. Astrophys J, 2008, 676(1): 420-426.
    Woolsey N C, Gregory C D, Kodama R, et al. Laboratory Plasma Astrophysics Simulation Experiments Using Lasers [J]. J Phys Conf Ser, 2008, 112: 042009.
    Edwards J, Lorenz K T, Remington B A, et al. Laser-Driven Plasma Loader for Shockless Compression and Acceleration of Samples in the Solid State [J]. Phys Rev Lett, 2004, 92(7): 075002.
    Lorenz K T, Edwards M J, Glendinning S G, et al. Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter [J]. Phys Plasmas, 2005, 12(5): 056309.
    Smith R F, Eggert J H, Jankowski A, et al. Stiff Response of Aluminum under Ultrafast Shockless Compression to 110 GPa [J]. Phys Rev Lett, 2007, 98(6): 065701.
    Smith R F, Pollaine S M, Moon S J, et al. High Planarity X-Ray Drive for Ultrafast Shockless-Compression Experiments [J]. Phys Plasmas, 2007, 14(5): 057105.
    Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-Ray Absorption Fine Structure Measurements of Quasi-Isentropically Compressed Vanadium Targets on the OMEGA Laser [J]. Phys Plasmas, 2008, 15(6): 062703.
    Smith R F, Lorenz K T, Ho D, et al. Graded-Density Reservoirs for Accessing High Stress Low Temperature Material States [J]. Astrophys Space Sci, 2007, 307(1-3): 269-272.
    Park H, Remington B A, Braun D, et al. Quasi-Isentropic Material Property Studies at Extreme Pressures: From Omega to NIF [J]. J Phys Conf Ser, 2008, 112: 042024.
    Moses E I, Boyd R N, Remington B A, et al. The National Ignition Facility: Ushering in a New Age for High Energy Density Science [J]. Phys Plasmas, 2009, 16(4): 041006.
    Marsh S P. LASL Shock Hugoniot Data [M]. London: University of California Press, 1980.
    Shu H. Laser Driven Shock Wave Stability and Compressions [A]//The 1st High Energy Density Physics Conference [C]. Chengdu, 2009. (in Chinese)
    舒桦. 强激光动载下材料的冲击稳定性及压缩性研究 [A]//第一届高能量密度物理会议 [C]. 成都, 2009.
    Holian K S. T-4 Handbook of Material Properties Database, LA-10160-MS-V. 1C [R]. USA: Los Alamos National Laboratory, 1984.
    Mo J J. Calculation of Metallic Compression Isentropes and Study on Isentropic Compression Experiments by Detonation Driving [D]. Mianyang: China Academy of Engineering Physics, 2006: 46-49. (in Chinese)
    莫建军. 金属等熵压缩线计算及爆轰加载等熵压缩实验研究 [D]. 绵阳: 中国工程物理研究院, 2006: 46-49.
    Li W X. One-Dimensional Nonsteady Flow and Shock Waves [M]. Beijing: National Defence Industry Press, 2003. (in Chinese)
    李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.
    Chang S C. The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations [J]. J Comput Phys, 1995, 119(2): 295-324.
    Zhang Z C, Yu S T J, Chang S C, et al. A Modified Space-Time Conservation Element and Solution Element Method for Euler and Navier-Stokes Equations [A]//Proceedings of the AIAA Conference [C]. Albuquerque, 1999: 3277.
  • 加载中
计量
  • 文章访问数:  8635
  • HTML全文浏览量:  342
  • PDF下载量:  610
出版历程
  • 收稿日期:  2010-04-15
  • 修回日期:  2010-08-24
  • 刊出日期:  2011-08-15

目录

    /

    返回文章
    返回