空间碎片超高速撞击充气压力容器前壁准静态破坏分析

盖芳芳 庞宝君 管公顺

盖芳芳, 庞宝君, 管公顺. 空间碎片超高速撞击充气压力容器前壁准静态破坏分析[J]. 高压物理学报, 2011, 25(1): 48-54 . doi: 10.11858/gywlxb.2011.01.008
引用本文: 盖芳芳, 庞宝君, 管公顺. 空间碎片超高速撞击充气压力容器前壁准静态破坏分析[J]. 高压物理学报, 2011, 25(1): 48-54 . doi: 10.11858/gywlxb.2011.01.008
GAI Fang-Fang, PANG Bao-Jun, GUAN Gong-Shun. Quasi-Static Bursting Analysis of Gas-Filled Pressure Vessels on the Front Side under Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 48-54 . doi: 10.11858/gywlxb.2011.01.008
Citation: GAI Fang-Fang, PANG Bao-Jun, GUAN Gong-Shun. Quasi-Static Bursting Analysis of Gas-Filled Pressure Vessels on the Front Side under Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 48-54 . doi: 10.11858/gywlxb.2011.01.008

空间碎片超高速撞击充气压力容器前壁准静态破坏分析

doi: 10.11858/gywlxb.2011.01.008
详细信息
    通讯作者:

    盖芳芳

Quasi-Static Bursting Analysis of Gas-Filled Pressure Vessels on the Front Side under Hypervelocity Impact

More Information
    Corresponding author: GAI Fang-Fang
  • 摘要: 针对空间碎片超高速撞击充气压力容器前壁发生准静态破坏问题,将其简化为受双向拉应力的圆孔边双裂纹的线弹性断裂问题进行处理;并在数值模拟及理论分析的基础上建立了充气压力容器前壁发生准静态破坏的预报模型,得到了当球形弹丸撞击速度为7.0 km/s时、壁厚为1.0 mm的Al5754圆柱形压力容器前壁发生准静态破坏的临界应力曲线,计算结果与实验结果比较吻合。计算结果表明:前壁穿孔直径与裂纹直径皆随着弹丸直径的增加而增加;若孔边的单裂纹长度与穿孔半径的比值超过0.5,则可以将穿孔近似为狭长贯穿直裂纹进行处理。分析还得出当容器内压力较大时,具有较小动能的弹丸就可能导致容器在撞击瞬间发生裂纹失稳破坏。

     

  • Whitney J P. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels [R]. USA: NASA Johnson Space Center, JSC 32294, 1993.
    Friesen L J. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels, Part Ⅱ [R]. USA: NASA Johnson Space Center, 1995.
    Lambert M. Hypervelocity Impact Testing Impacts Pressure Vessels [R]. Paris: ESTEC, 1997.
    Greory D O, Angela M N. Hypervelocity Impact Testing of Pressure Vessels to Simulate Spacecraft Failure [J]. Int J Impact Eng, 2001, 26: 555-566.
    Schonberg W P, Williamsen J E. Empirical Hole Size and Crack Length Models for Dual-Wall Systems under Hypervelocity Projectile Impact [J]. Int J Impact Eng, 1997, 20: 711-722.
    Telitchev I Y, Schafer F. Analysis of the Fracture of Gas-Filled Pressure Vessels under Hypervelocity Impact [J]. Int J Impact Eng, 1999, 23: 905-919.
    Christiansen E L, Kerr J H. Debris Cloud Ablation in Gas-Filled Pressure Vessels [J]. Int J Impact Eng, 1997, 20: 173-184.
    Schafer F, Schneider E E, Michel L. Impact Fragment Cloud Propagating in a Pressure Vessel [J]. Acta Astronautica, 1997, 39(1): 31-40.
    Katayama M, Toda S, Kibe S. Numerical Simulation of Space Debris Impacts on the Whipple Shield [J]. Acta Astronautica, 1997, 40(12): 859-869.
    Michel L, Eberhard S. Hypervelocity Impacts on Gas Filled Pressure Vessels [J]. Int J Impact Eng, 1997, 20: 491-498.
    Bueckner H A. Principle for the Computation of Stress Intensity Factors [J]. ZAMM, 1970, 50: 529-546.
    Xiao S T, Brown M W, Miller K J. Stress Intensity Factors for Cracks in Notched Finite Plates Subjected to Biaxial Loading [J]. Fatigue Fract Eng Mater Struct, 1985, 8(4): 349-372.
    Xu Z L. Elasticity Mechanics (Book 1) [M]. 3rd ed. Beijing: Higher Education Press, 1990: 97-103. (in Chinese)
    徐芝纶. 弹性力学(上册) [M]. 第3版. 北京: 高等教育出版社, 1990: 97-103.
    Folias E S. An Axial Crack in a Pressurized Cylinder [J]. Int J Fract Mech, 1965, 1: 104-113.
  • 加载中
计量
  • 文章访问数:  7527
  • HTML全文浏览量:  338
  • PDF下载量:  575
出版历程
  • 收稿日期:  2009-10-20
  • 修回日期:  2009-12-07
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回