函数的H-导数和分形动力学

董连科 王晓伟

董连科, 王晓伟. 函数的H-导数和分形动力学[J]. 高压物理学报, 1997, 11(1): 13-20 . doi: 10.11858/gywlxb.1997.01.003
引用本文: 董连科, 王晓伟. 函数的H-导数和分形动力学[J]. 高压物理学报, 1997, 11(1): 13-20 . doi: 10.11858/gywlxb.1997.01.003
DONG Lian-Ke, WANG Xiao-Wei. H-Derivative of the Function and the Fractal Dynamics[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 13-20 . doi: 10.11858/gywlxb.1997.01.003
Citation: DONG Lian-Ke, WANG Xiao-Wei. H-Derivative of the Function and the Fractal Dynamics[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 13-20 . doi: 10.11858/gywlxb.1997.01.003

函数的H-导数和分形动力学

doi: 10.11858/gywlxb.1997.01.003
详细信息
    通讯作者:

    董连科

H-Derivative of the Function and the Fractal Dynamics

More Information
    Corresponding author: DONG Lian-Ke
  • 摘要: 给出了函数的Hausdorff测度与H-导数。从而,为开展自给的分形动力学提供了解析的数学工具。同时,给出了分形动力学的演化方程组并做了初步讨论与分析。

     

  • Alain le m'ehaut'e. Fractal Geometry, Theory and Application. Jack Howlett Tran. Boca Raten-Ann Arbot-London: CRC Press Inc, 1991.
    Betal D K. The Fractional Calculus, Theory and Application of Differentiation and Integration to Arbitrany Order. New York: Academia Press, 1974.
    Feder J. Fractals. New York: Plenum Press, 1988.
    Besicovitch A S. Proceedings of the Combridge Philosophical Society, 1945, 41: 101.
    Falconer K J. The Geometry of Fractal Sets. Combridge, New York: Combridge University Press, 1985.
  • 加载中
计量
  • 文章访问数:  7462
  • HTML全文浏览量:  620
  • PDF下载量:  707
出版历程
  • 收稿日期:  1996-08-19
  • 修回日期:  1996-10-09
  • 刊出日期:  1997-03-05

目录

    /

    返回文章
    返回