The High Oxygen Pressure Synthesis of Metallic LaCuO3 and the XPS Study on Cu3+ State
-
摘要: 本文在成功地用超高氧压(~6.5 GPa)及高温(~980 ℃)合成和结构测定的基础上,首次对金属性化合物中LaCuO3中的Cu3+离子给予标定,并研究了它与绝缘体中Cu3+的区别。本论文中合成的LaCuO3为金属性化合物,电导率测量表明在大于13 K无超导电性迹象。XPS测量给出了LaCuO3中Cu2p3/2内层电子结合能相对于La2CuO4或CuO中的Cu2+向高结合能方向移动了约2.6 eV,这一量值远大于NaCuO2(绝缘体)中的Cu2p3/2相对于CuO中的Cu2+移动的值,约为1.3 eV。Auger谱测量表明,LaCuO3的修正了的Auger参数与CuO的基本相同,但L3VV的Auger电子动能相对CuO移动了2.8 eV。这些位移说明在金属性化合物LaCuO3中,Cu3+处在八面体位置上,它与近邻的Cu3+连成单个CuOCu桥,因此可作为对比p型高Tc含铜氧化物的XPS谱的标准。Abstract: In this work, on the basis of LaCuO3 synthesized at high oxygen pressure (~6.5 GPa) and temperature (~980 ℃) and of its structure determination, the Cu3+ ion in metallic state was first characterized, and the difference between the metallic and insulator state was studied. The compound of LaCuO3 synthesized in this study is a metallic one which does not show superconductivity until 13 K by resistivity measurements. The XPS measurements show that the Cu2p3/2 core level in LaCuO3 shifts to higher binding energy about 2.6 eV relative to that of Cu2+ in La2CuO4 or CuO, this value is 1.3 eV higher than the relative shift value of Cu2p3/2 in NaCuO2 (insulator) to Cu2+ in CuO. The measurement of Auger line indicates that the modified Auger parameters of LaCuO3 are comparable to CuO but the L3VV Auger-electron kinetic energy shifts by 2.8 eV relative to that of CuO. These shifts indicate that the Cu3+ is in an octahedral site linked to neighboring Cu3+ via a single 180CuOCu bridge in a metallic phase. This spectrum is, therefore, can be used as a useful standard for comparison with the XPS spectra of the p-type high-Tc copper oxides.
-
Key words:
- LaCuO3 /
- synthesis under high oxygen pressure /
- XPS /
- Cu3+ state
-
Bianconi A, Congiu Castellano A, de Santis M, et al. Solid State Commun, 1987, 63: 1135. Steiner P, Kinsinger V, Sander I, et al. Z Phys B, 1987, 67: 497. Horn S, Cai J, Shaheen S A, et al. Phys Rev B, 1987, 36: 3895. Dauth B, Kachel T, Sen P, et al. Z Phys B, 1987, 68: 407. Iqbal Z, Leone E, Chin R, et al. J Mater Res, 1987, 2: 768. Steiner P, Hufner S, Kinsinger V, et al. Z Phys B, 1988, 69: 449-458. Tranquada J M, Heald S M, Moodenbaugh A R. Phys Rev B, 1987, 36: 5263. Nucker N, Fink J, Fuggle J C, et al. Phys Rev B, 1988, 37: 5158. Shen Z X, Allen J W, Yeh J J, et al. Phys Rev B, 1987, 36: 8414. Emery V J. Phys Rev Lett, 1987, 58: 2794. de Groot R A, Gutfreund H, Weger M. Solid State Commun, 1987, 63: 451. Goodenough J B. Mater Res Bull, 1988, 23: 401. Fujimbri A, Takayama-Muromachi E, Uchida Y, et al. Phys Rev B, 1987, 35: 8814. Aharony A, Birgeneau R J, Coniglio A, et al. Phys Rev Lett, 1988, 60: 1330. Sacher E, Klemberg-Sapieha J E, Cambron A, et al. J Electron Spectrosc Relat Phenom, 1989, 48: c7-c12. Liang N T, Li K H, Chou Y C, et al. Solid State Commun, 1987, 64: 761. Demazeau G, Parent C, Pouchard M, et al. Mater Res Bull, 1972, 7: 913. Joubert J C, Chenavas J. In: Hannay N B. Treaties on Solid State Chemistry. v5. New York: Plenum, 1975: 463. Goodenough J B, Kafalas J A, Longo J M. In: Paul Hagenmuller. Preparative Methods in Solid State Chemistry. New York: Academic, 1972. Briggs D, Seah M P. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. New York: Wiley, 1983. Gross Th, Richter K, Sonntag H, et al. J Electron Spectrosc Relat Phenom, 1989, 48: 7-12. -
计量
- 文章访问数: 9234
- HTML全文浏览量: 2007
- PDF下载量: 878

下载: