Fe26 Equation of State Calculations for Hot Dense Matter at Arbitrary Density and Temperature
-
摘要: 本文在球元胞、中心力场、相对论Fermi统计近似下,用平均原子模型计算铁热稠密物质在任意温度和密度下的单电子能级和状态方程。这种算法以Zink的解析拟合势作为初始势,求解满足Wigner-Seitz边界条件的Dirac-Slater径向波函数方程。通过简并度是密度的连续函数,考虑了大密度的压致电离效应。这样从另一个角度考虑了电子的能带结构。
-
关键词:
- 状态方程 /
- 平均原子模型 /
- 压致电离效应 /
- Dirac-Slater径向方程 /
- 热稠密物质
Abstract: In the spherical lattice cell, central-field and relativistic Fermi statistics approximations, an algorithm is presented with average atom model to calculate electron levels and the equation of state for hot and dense matter at arbitrary density and temperature. Zink's analytic potential is chosen as starting potential to solve Dirac-Slater equation satisfying the Wigner-Seitz boundary condition. The pressure ionization effects are included by level degeneracy as a founction of density for dense matter. Results are show for Fe26 atom. -
Holian K S. LA-10160-MS, 1984: 3712, 2140. Бушман А В. УФН, 1983: 140, 177. Feynman R P, Metroplis N, Teller E. Phys Rev, 1949, 75(6): 1561. Cowan R D, Askin J. Phys Rev, 1957, 105(1): 144. Zink J W. Phys Rev, 1968, 176(1): 279. Avrorin E N, et al. JETP Lett, 1980, 31(12): 685. Rozsnyai B F. Phys Rev A, 1972, 5(3): 1137. Mancini R C, Fontan C F. JQSRT, 1985, 34(2): 115. Ellis D E. J Phys, 1977, B10(1): 1. 赵伊君. 国防科技大学学报, 1980, (4) 19. Perrot F. Phys Rev A, 1979, 20(2): 586. Latter R. Phys Rev, 1955, 99(2): 510. Latter R. Phys Rev, 1955, 99(6): 1854. Desclaux J P. Atom Date Nucl Data Tabl, 1973, 12(4): 311. Vladimirov A S, et al. JETP Lett, 1984, 39(2): 82. -
计量
- 文章访问数: 8615
- HTML全文浏览量: 2007
- PDF下载量: 672

下载: