高压制备高强度木质材料

叶子 周雪峰 许家宁 周成林 杨逸 郑林鹏 陈斌

叶子, 周雪峰, 许家宁, 周成林, 杨逸, 郑林鹏, 陈斌. 高压制备高强度木质材料[J]. 高压物理学报, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127
引用本文: 叶子, 周雪峰, 许家宁, 周成林, 杨逸, 郑林鹏, 陈斌. 高压制备高强度木质材料[J]. 高压物理学报, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127
YE Zi, ZHOU Xuefeng, XU Jianing, ZHOU Chenglin, YANG Yi, ZHENG Linpeng, CHEN Bin. High-Pressure Preparation of High-Strength Wood Materials[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127
Citation: YE Zi, ZHOU Xuefeng, XU Jianing, ZHOU Chenglin, YANG Yi, ZHENG Linpeng, CHEN Bin. High-Pressure Preparation of High-Strength Wood Materials[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127

高压制备高强度木质材料

doi: 10.11858/gywlxb.20251127
基金项目: 国家自然科学基金(12274101)
详细信息
    作者简介:

    叶 子(2000-),女,硕士研究生,主要从事高压力学研究. E-mail:ye.zi@hpstar.ac.cn

    通讯作者:

    陈 斌(1968-),男,博士,研究员,主要从事高压物理研究. E-mail:chenbin@hpstar.ac.cn

  • 中图分类号: O521.2

High-Pressure Preparation of High-Strength Wood Materials

  • 摘要: 地球上的矿产资源是有限的,而木材则可以再生。用改性木材代替储量有限的工业材料是人类长期追求的目标。采用大腔体六面顶压机对轻木、椴木和东非黑紫檀3种木材试样进行室温高压处理,分析了高压处理对其气干密度、抗压强度、弹性模量等性能的影响,并通过CT和扫描电子显微镜观察其内部微观结构变化。结果表明,3种木材的物理力学性能均有所提升。轻木、椴木和东非黑紫檀经5.50 GPa高压处理后,其密度分别提升239%、112%和11%,表面硬度分别提升79%、46%和15%,抗压强度分别提升33%、9%和28%。东非黑紫檀压密材的比强度(101.55 kJ/kg)接近铝合金(109.23 kJ/kg);东非黑紫檀具有比陶瓷材料轻质、比铝合金绝缘和隔热的特点;高比强度东非黑紫檀有潜力取代铝合金,有望在很多特殊环境中获得应用,为未来工业的可持续发展提供支持。研究结果为木材高值化应用提供了新思路。

     

  • 图  大腔体六面顶压机内部(a)、高压腔体组装(b)及木料加工(c)示意图

    Figure  1.  Schematic diagram of the interior of large-volume cubic press (a), high-pressure cell assembly (b) and wood processing (c)

    图  5.50 GPa压力处理后木材的显微CT影像

    Figure  2.  Micro-CT scans of wood samples treated at 5.50 GPa

    图  轻木(a)、椴木(b)和东非黑紫檀(c)对照样的横切面显微构造图像;轻木(d)、椴木(e)及东非黑紫檀(f)经5.50 GPa高压处理试样的横切面显微构造图像;轻木对照样(g)与5.50 GPa压力处理试样(h)的横切面SEM图像

    Figure  3.  Cross-sectional micrographs of the control samples for balsa (a), basswood (b), and African blackwood (c), respectively; cross-sectional micrographs of balsa (d), basswood (e), and African blackwood (f) samples treated at 5.50 GPa, respectively; cross-sectional SEM images of balsa control (g) and 5.50 GPa-treated (h) samples, respectively

    图  高压处理前、后木材的抗压强度

    Figure  4.  Compressive strengths of wood samples before and after high-pressure treatment

    图  3种木材在5.50 GPa处理前、后的力-位移曲线

    Figure  5.  Force-displacement curves of three wood species before and after 5.50 GPa treatment

    图  高压处理前、后木材样品的弹性模量

    Figure  6.  Elastic modulus of wood samples before and after high-pressure treatment

    图  木材高压处理前后的硬度变化

    Figure  7.  Hardness of wood samples before and after high-pressure treatment

    表  1  木材高压处理前、后的气干密度

    Table  1.   Airdry densities of wood samples before and after high-pressure treatment

    Wood speciesAirdry density at different pressure treatments/(g·cm−3)Increase rate/%
    Control2.55 GPa4.00 GPa5.50 GPaTreated1 year
    Balsa0.301.030.971.05239197
    Basswood0.491.031.041.05112100
    African blackwood1.271.351.381.48114
    下载: 导出CSV

    表  2  对照组木材的组分含量

    Table  2.   Component content of control wood

    Wood speciesCellulose/%Hemicellulose/%Lignin/%
    Balsa40.6415.5319.55
    Basswood43.2122.3414.45
    African blackwood48.8521.5211.83
    下载: 导出CSV

    表  3  不同材料的比强度

    Table  3.   Specific strength of different materials

    MaterialStrength/MPaDensity/(g·cm−3)Specific strength/(kJ·kg−1)
    5.50 GPa-treated balsa36.241.0534.24
    5.50 GPa-treated basswood48.351.0546.05
    5.50 GPa-treated African blackwood150.301.48101.55
    Concrete RC40[29]47.51.9524.36
    Concrete P·I 42.5[30]45.22.319.65
    Polyethylene plastic390.9142.86
    Steel[31]13407.83171.14
    Aluminum alloy[31]2962.71109.23
    Titanium alloy[31]10604.43239.28
    下载: 导出CSV
  • [1] 吴义强. 木材科学与技术研究新进展 [J]. 中南林业科技大学学报, 2021, 41(1): 1–28. doi: 10.14067/j.cnki.1673-923x.2021.01.001

    WU Y Q. Newly advances in wood science and technology [J]. Journal of Central South University of Forestry & Technology, 2021, 41(1): 1–28. doi: 10.14067/j.cnki.1673-923x.2021.01.001
    [2] ZHU Y M, ZHANG J, ZHANG Y, et al. Editorial: design and mechanical failure of deep-sea pressure structures [J]. Frontiers in Materials, 2023, 10: 1292283. doi: 10.3389/fmats.2023.1292283
    [3] MACDONALD A. High-pressure equipment for use in the laboratory, at sea and at depth [M]//MACDONALD A. Life at High Pressure: In the Deep Sea and Other Environments. Cham: Springer, 2021: 353–417.
    [4] AMAN Z, WEIXING Z, SHIPING W, et al. Dynamic response of the non-contact underwater explosions on naval equipment [J]. Marine Structures, 2011, 24(4): 396–411. doi: 10.1016/j.marstruc.2011.05.005
    [5] GUO X S, FAN N, LIU Y H, et al. Deep seabed mining: frontiers in engineering geology and environment [J]. International Journal of Coal Science & Technology, 2023, 10(1): 23. doi: 10.1007/s40789-023-00580-x
    [6] 涂登云, 陈川富, 周桥芳, 等. 木材压缩改性技术研究进展 [J]. 林业工程学报, 2021, 6(1): 13–20. doi: 10.13360/j.issn.2096-1359.202001036

    TU D Y, CHEN C F, ZHOU Q F, et al. Research progress of thermo-mechanical compression techniques for wood products [J]. Journal of Forestry Engineering, 2021, 6(1): 13–20. doi: 10.13360/j.issn.2096-1359.202001036
    [7] NAVI P, PIZZI A. Property changes in thermo-hydro-mechanical processing: COST action FP0904 2010–2014: thermo-hydro-mechanical wood behavior and processing [J]. Holzforschung, 2015, 69(7): 863–873. doi: 10.1515/hf-2014-0198
    [8] SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material [J]. Nature, 2018, 554(7691): 224–228. doi: 10.1038/nature25476
    [9] HUANG W Z, JIN Y X, GUO Y, et al. Fabrication of high-performance densified wood via high-pressure steam treatment and hot-pressing [J]. Polymers, 2024, 16(7): 939. doi: 10.3390/polym16070939
    [10] LI H H, ZHANG F M, RAMASWAMY H S, et al. High-pressure treatment of Chinese fir wood: effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability [J]. BioResources, 2016, 11(4): 10497–10510. doi: 10.15376/biores.11.4.10497-10510
    [11] YU Y, ZHANG F M, ZHU S M, et al. Effects of high-pressure treatment on poplar wood: density profile, mechanical properties, strength potential index, and microstructure [J]. BioResources, 2017, 12(3): 6283–6297. doi: 10.15376/biores.12.3.6283-6297
    [12] 侯俊峰, 周永东. 木材热压干燥研究现状与应用前景 [J]. 世界林业研究, 2017, 30(6): 41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0077.y

    HOU J F, ZHOU Y D. Research status and application prospect of wood hot-press drying [J]. World Forestry Research, 2017, 30(6): 41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0077.y
    [13] 赵钟声, 刘一星, 孟令联. 高温高压水蒸汽处理制造压缩木、人造板材的研究 [J]. 林业机械与木工设备, 2001, 29(11): 16–17. doi: 10.3969/j.issn.2095-2953.2001.11.005
    [14] ORMONDROYD G, SPEAR M, CURLING S. Modified wood: review of efficacy and service life testing [J]. Construction Materials, 2015, 168(4): 187–203. doi: 10.1680/coma.14.00072
    [15] 王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001

    WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001
    [16] BÁDER M, NÉMETH R. The effect of the relaxation time on the mechanical properties of longitudinally compressed wood [J]. Wood Research, 2018, 63(3): 383–398.
    [17] FELHOFER M, BOCK P, SINGH A, et al. Wood deformation leads to rearrangement of molecules at the nanoscale [J]. Nano Letters, 2020, 20(4): 2647–2653. doi: 10.1021/acs.nanolett.0c00205
    [18] LIANG X, GUO Y F, YAN J, et al. Pressure-mediated reconstruction of hydrogen bonding networks under ambient temperature towards high-strength cellulosic bulk materials [J]. Cellulose, 2024, 31(9): 5461–5477. doi: 10.1007/s10570-024-05936-3
    [19] 周欢, 徐朝阳, 李健昱. 樟子松密实化前后吸能特性的对比 [J]. 林业工程学报, 2016, 1(3): 38–41. doi: 10.13360/j.issn.2096-1359.2016.03.007

    ZHOU H, XU Z Y, LI J Y. A comparison of energy absorption characteristics of Mongolian pine wood before and after densification [J]. Journal of Forestry Engineering, 2016, 1(3): 38–41. doi: 10.13360/j.issn.2096-1359.2016.03.007
    [20] LAINE K, SEGERHOLM K, WÅLINDER M, et al. Wood densification and thermal modification: hardness, set-recovery and micromorphology [J]. Wood Science and Technology, 2016, 50(5): 883–894. doi: 10.1007/s00226-016-0835-z
    [21] KELLOGG R M, WANGAARD F F. Variation in the cell-wall density of wood [J]. Wood and Fiber Science, 1969, 1(3): 180–204.
    [22] BORREGA M, GIBSON L J. Mechanics of balsa (Ochroma pyramidale) wood [J]. Mechanics of Materials, 2015, 84: 75–90. doi: 10.1016/j.mechmat.2015.01.014
    [23] 张双燕. 化学成分对木材细胞壁力学性能影响的研究 [D]. 北京: 中国林业科学研究院, 2011.

    ZHANG S Y. Chemical components effect on mechanical properties of wood cell wall [D]. Beijing: Chinese Academy of Forestry, 2011.
    [24] 刘一星, 赵广杰. 木材学 [M]. 2版. 北京: 中国林业出版社, 2012: 207–219.

    LIU Y X, ZHAO G J. Wood science [M]. 2nd ed. Beijing: China Forestry Publishing House, 2012: 207–219.
    [25] PAPANDREA S F, CATALDO M F, BERNARDI B, et al. The predictive accuracy of modulus of elasticity (MOE) in the wood of standing trees and logs [J]. Forests, 2022, 13(8): 1273. doi: 10.3390/f13081273
    [26] 尹维, 田煜, 陶大帅, 等. 天然树木和竹子纤维材料的力学性能及仿生研究进展 [J]. 科学通报, 2015, 60(31): 2949–2962. doi: 10.1360/N972014-01318

    YIN W, TIAN Y, TAO D S, et al. Research progress of mechanical properties of natural wood and bamboo fiber composites and their biomimetics [J]. Chinese Science Bulletin, 2015, 60(31): 2949–2962. doi: 10.1360/N972014-01318
    [27] 田蜜, 董晓娜, 曾祥全, 等. 黑黄檀木材物理和力学性质研究 [J]. 四川林业科技, 2024, 45(1): 115–119. doi: 10.12172/202304170003

    TIAN M, DONG X N, ZENG X Q, et al. Physical and mechanical properties of Dalbergia fusca wood [J]. Journal of Sichuan Forestry Science and Technology, 2024, 45(1): 115–119. doi: 10.12172/202304170003
    [28] WANG W H. Bulk metallic glasses with functional physical properties [J]. Advanced Materials, 2009, 21(45): 4524–4544. doi: 10.1002/adma.200901053
    [29] 张爱丽, 田光辉, 郭颜凤. 不同强度等级下再生混凝土的力学及路用性能研究 [J]. 混凝土, 2023(12): 192–195. doi: 10.3969/j.issn.1002-3550.2023.12.039

    ZHANG A L, TIAN G H, GUO Y F. Research on mechanical and road performance of recycled concrete under different strength grades [J]. Concrete, 2023(12): 192–195. doi: 10.3969/j.issn.1002-3550.2023.12.039
    [30] 黄友芬, 高奇, 李伟, 等. 高强自密实混凝土抗压强度影响因素分析 [J]. 中国建材科技, 2022, 31(6): 30–33. doi: 10.12164/j.issn.1003-8965.2022.06.008

    HUANG Y F, GAO Q, LI W, et al. Analysis of influencing factors on compressive strength of high strength self-compacting concrete [J]. China Building Materials Science & Technology, 2022, 31(6): 30–33. doi: 10.12164/j.issn.1003-8965.2022.06.008
    [31] GIBSON A J. Wood in the plastics industry [J]. Empire Forestry Journal, 1942, 21(2): 116–119.
    [32] 龚勋, 魏文华, 赵小舟, 等. 碳化硼陶瓷的军工应用及前沿制备技术 [J]. 中国军转民, 2021(5): 56–59. doi: 10.3969/j.issn.1008-5874.2021.05.033
    [33] 刘一星, 李坚, 刘君良, 等. 水蒸气处理法制作压缩整形木的研究(Ⅰ): 构造变化和尺寸稳定性 [J]. 东北林业大学学报, 2000, 28(4): 9–12. doi: 10.3969/j.issn.1000-5382.2000.04.003

    LIU Y X, LI J, LIU J L, et al. Study on compressive orthopaedy wood by stream treating at high temperature (Ⅰ): structure change and dimension stability [J]. Journal of Northeast Forestry University, 2000, 28(4): 9–12. doi: 10.3969/j.issn.1000-5382.2000.04.003
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  124
  • PDF下载量:  21
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-08-02
  • 网络出版日期:  2025-08-08
  • 刊出日期:  2026-02-05

目录

    /

    返回文章
    返回