Interface Proximity Effect on the Evolution of a Shock-Accelerated Heavy Gas Cylinder
-
摘要: 针对实际应用中激波与物质近表面杂质及孔洞等相互作用中的界面邻近效应,通过数值模拟开展了下游平面重-轻界面对激波诱导重气柱演化影响的简化机理研究。结果表明,激波冲击气柱形成的衍射和透射波系依次冲击下游界面,在气柱与下游界面之间形成来回反射的波系结构,这些波系不仅影响气柱的界面演化,而且在下游界面诱导产生射流。在不同的界面间距条件下,气柱外部衍射波系在下游界面的反射波系不同,这些反射波系及气柱内部聚焦波系冲击气柱右极点的先后顺序也存在差异。当界面间距较小时,气柱射流可以穿透气柱与下游界面之间的间隙流体,并与下游界面射流耦合,显著促进气柱射流的演化。随着界面间距的增大,射流耦合现象逐渐减弱,重气柱演化涡对抑制了气柱射流的发展。当界面间距进一步增大时,气柱射流又会因下游界面反射稀疏波系的拉伸作用而被促进。此外,在不同的界面间距条件下,下游界面的存在均对气柱界面宽度、高度的发展及环量沉积起到促进作用。Abstract: To uncover the interface proximity effect arising from the interaction between shock wave and near-surface impurity and hole of material in practical applications, a simplified mechanism study on the influence of downstream planar heavy-light interfaces on the evolution of a shock-accelerated heavy gas cylinder was carried out through numerical simulation. The findings reveal that the diffracted and transmitted wave systems formed by the incident shock impacting the heavy gas cylinders successively interact with the downstream planar slow-fast interface, leading to the formation of wave systems that reflect back and forth between the gas cylinder and the downstream planar slow-fast interface. Significantly, these wave systems not only govern the evolution of the gas cylinder interface but also trigger the generation of jets at the downstream planar slow-fast interfaces. Under diverse interfacial spacing conditions, the type of reflected waves originating from the diffracted wave system outside the gas cylinder varies at the downstream interface, and the sequence of the reflected wave system and the focused wave system inside the gas cylinder interacting with the right pole of the gas cylinder is different. When the interfacial distance is narrow, the gas cylinder jet can permeate the gap fluid sandwiched between the gas cylinder and the downstream slow-fast interface and couple with the jet at the downstream planar slow-fast interface, which significantly promotes the evolution of the gas cylinder jet. As the interfacial distance increases, the jet coupling phenomenon progressively wanes, and the gas cylinder jet succumbs to the inhibitory effect of the vortex pair within the gas cylinder. With a further augmentation in interfacial distance, the gas cylinder jet will be promoted by the stretching effect of the reflected rarefaction wave system at the downstream interface. In addition, under different interface spacing conditions, the presence of a downstream planar slow-fast interface invariably augments the development of interfacial width, height, as well as circulation deposition.
-
Key words:
- shock wave /
- Richtmyer-Meshkov instability /
- gas cylinder /
- jet /
- micro-jet /
- circulation
-
图 4 工况Ⅰ条件下激波与重气柱作用过程的数值纹影图(上)和压力云图(下)(IS、DS、TS1和TDS分别代表入射激波、衍射激波、透射激波和透射衍射激波,RS1和RS2代表反射激波,SS1、SS2和SS3代表流场横波,MS1和MS2代表马赫杆,U代表未扰动区)
Figure 4. Numerical schlieren (upper) and pressure contour (lower) of the flow field resulting from the interaction between a planar incident shock wave and a heavy gas cylinder for case Ⅰ (Here IS, DS, TS1 and TDS, respectively, denote the incident shock, the diffracted shock, the transmitted shock and the transmitted diffracted shock; RS1 and RS2 represent the reflected shocks; SS1, SS2, and SS3 denote the transverse shocks; MS1 and MS2 represent the Mach stems; U denote the undisturbed flow region.)
图 5 工况Ⅱ条件下激波与气柱作用过程的数值纹影图(上)和压力云图(下)(TS1、TS2和TS3代表透射激波,RS1、RS2、RS3和RS4代表反射激波,RW1、RW2、RW3和RW4代表反射稀疏波,SS1代表流场横波,FPS代表自由前驱激波,IP1和IP2代表激波与界面交点)
Figure 5. Numerical schlieren (upper) and pressure contour (lower) of the flow field resulting from the interaction between a planar incident shock wave and a heavy gas cylinder for case Ⅱ (Here TS1, TS2 and TS3 denote the transmitted shocks; RS1, RS2, RS3 and RS4 denote the reflected shocks; RW1, RW2, RW3 and RW4 denote the reflected rarefaction waves; SS1 denotes the transverse shock; FPS denotes the free precursor shock wave; IP1 and IP2 represent the shock-interface intersection points.)
表 1 初始条件设置
Table 1. Setting of initial conditions
Case Gas combinations of downstream planar heavy-light interfaces Ms L/mm Ⅰ Air-He 1.22 ∞ Ⅱ Air-He 1.22 0.6D0 Ⅲ Air-He 1.22 0.7D0 Ⅳ Air-He 1.22 2.0D0 -
[1] ZHOU Y, SADLER J D, HURRICANE O A. Instabilities and mixing in inertial confinement fusion [J]. Annual Review of Fluid Mechanics, 2025, 57: 197–225. doi: 10.1146/ANNUREV-FLUID-022824-110008 [2] BETTI R, HURRICANE O A. Inertial-confinement fusion with lasers [J]. Nature Physics, 2016, 12(5): 435–448. doi: 10.1038/nphys3736 [3] BOKMAN G T, BIASIORI-POULANGES L, MEYER D W, et al. Scaling laws for bubble collapse driven by an impulsive shock wave [J]. Journal of Fluid Mechanics, 2023, 967: A33. doi: 10.1017/jfm.2023.514 [4] REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets: progress and challenges [J]. Progress in Aerospace Sciences, 2019, 105: 40–59. doi: 10.1016/j.paerosci.2018.12.002 [5] YANG H X, RADULESCU M I. Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2021, 923: A36. doi: 10.1017/jfm.2021.594 [6] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181: 41–76. doi: 10.1017/S0022112087002003 [7] PICONE J M, BORIS J P. Vorticity generation by shock propagation through bubbles in a gas [J]. Journal of Fluid Mechanics, 1988, 189: 23–51. doi: 10.1017/S0022112088000904 [8] LI D D, WANG G, GUAN B. On the circulation prediction of shock-accelerated elliptical heavy gas cylinders [J]. Physics of Fluids, 2019, 31(5): 056104. doi: 10.1063/1.5090370 [9] BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics [J]. Journal of Fluid Mechanics, 2012, 696: 67–93. doi: 10.1017/jfm.2012.8 [10] RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43: 117–140. doi: 10.1146/annurev-fluid-122109-160744 [11] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/cpa.3160130207 [12] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. doi: 10.1007/BF01015969 [13] RUDINGER G, SOMERS L M. Behaviour of small regions of different gases carried in accelerated gas flows [J]. Journal of Fluid Mechanics, 1960, 7(2): 161–176. doi: 10.1017/S0022112060001419 [14] 邹立勇, 刘仓理, 庞勇, 等. 激波作用下SF6气泡界面演化和射流发展的数值模拟 [J]. 高压物理学报, 2013, 27(1): 90–98. doi: 10.11858/gywlxb.2013.01.013ZOU L Y, LIU C L, PANG Y, et al. A numerical study on interface evolution and jet development of a shocked SF6 gas bubble [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90–98. doi: 10.11858/gywlxb.2013.01.013 [15] ZHANG D J, XU A G, SONG J H, et al. Specific-heat ratio effects on the interaction between shock wave and heavy-cylindrical bubble: based on discrete Boltzmann method [J]. Computers & Fluids, 2023, 265: 106021. doi: 10.1016/j.compfluid.2023.106021 [16] 朱跃进, 于蕾, 潘剑锋, 等. 激波冲击SF6重气泡引发射流的数值模拟 [J]. 爆炸与冲击, 2018, 38(1): 50–59. doi: 10.11883/bzycj-2016-0135ZHU Y J, YU L, PAN J F, et al. Simulation on jet formation induced by interaction of shock wave with SF6 bubble [J]. Explosion and Shock Waves, 2018, 38(1): 50–59. doi: 10.11883/bzycj-2016-0135 [17] ZHAI Z G, SI T, ZOU L Y, et al. Jet formation in shock-heavy gas bubble interaction [J]. Acta Mechanica Sinica, 2013, 29(1): 24–35. doi: 10.1007/s10409-013-0003-8 [18] ZOU L Y, LIAO S F, LIU C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders [J]. Physics of Fluids, 2016, 28(3): 036101. doi: 10.1063/1.4943127 [19] BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2010, 82(5): 056318. doi: 10.1103/PhysRevE.82.056318 [20] LI P, BAI J S, WANG T, et al. Large eddy simulation of a shocked gas cylinder instability induced turbulence [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 262–268. doi: 10.1007/s11433-009-0269-9 [21] 柏劲松, 王涛, 邹立勇, 等. 可压缩多介质粘性流体和湍流的大涡模拟 [J]. 爆炸与冲击, 2010, 30(3): 262–268. doi: 10.11883/1001-1455(2010)03-0262-07BAI J S, WANG T, ZOU L Y, et al. Large eddy simulation for the multi-viscosity-fluid and turbulence [J]. Explosion and Shock Waves, 2010, 30(3): 262–268. doi: 10.11883/1001-1455(2010)03-0262-07 [22] ORLICZ G C, BALASUBRAMANIAN S, VOROBIEFF P, et al. Mixing transition in a shocked variable-density flow [J]. Physics of Fluids, 2015, 27(11): 114102. doi: 10.1063/1.4935183 [23] ZOU L Y, ZHAI Z G, LIU J H, et al. Energy convergence effect and jet phenomenon of shock-heavy spherical bubble interaction [J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12): 124703. [24] GEORGIEVSKIY P Y, LEVIN V A, SUTYRIN O G. Interaction of a shock with elliptical gas bubbles [J]. Shock Waves, 2015, 25(4): 357–369. doi: 10.1007/s00193-015-0557-4 [25] OU J F, DING J C, LUO X S, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction [J]. Experiments in Fluids, 2018, 59(2): 29. doi: 10.1007/s00348-018-2492-5 [26] FAN E, GUAN B, WEN C Y, et al. Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities [J]. Physics of Fluids, 2019, 31(2): 026103. [27] YANG J, KUBOTA T, ZUKOSKI E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity [J]. Journal of Fluid Mechanics, 1994, 258: 217–244. doi: 10.1017/S0022112094003307 [28] SAMTANEY R, ZABUSKY N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws [J]. Journal of Fluid Mechanics, 1994, 269: 45–78. doi: 10.1017/S0022112094001485 [29] XU A G, ZHANG D J, GAN Y B. Advances in the kinetics of heat and mass transfer in near-continuous complex flows [J]. Frontiers of Physics, 2024, 19(4): 42500. doi: 10.1007/s11467-023-1353-8 [30] 廖深飞, 邹立勇, 刘金宏, 等. 激波两次冲击下重气柱Richtmyer-Meshkov不稳定性的粒子图像测速研究 [J]. 高压物理学报, 2016, 30(6): 463–470. doi: 10.11858/gywlxb.2016.06.005LIAO S F, ZOU L Y, LIU J H, et al. A particle image velocimetry study of Richtmyer-Meshkov instability in a twice-shocked heavy gas cylinder [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 463–470. doi: 10.11858/gywlxb.2016.06.005 [31] ZOU L Y, HUANG W B, LIU C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders [J]. Journal of Fluids Engineering, 2014, 136(9): 091205. doi: 10.1115/1.4026439 [32] FENG L L, XU J R, ZHAI Z G, et al. Evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Fluids, 2021, 33(8): 086105. doi: 10.1063/5.0062459 [33] 郑纯, 何勇, 张焕好, 等. 激波诱导环形SF6气柱演化的机理 [J]. 爆炸与冲击, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226ZHENG C, HE Y, ZHANG H H, et al. On the evolution mechanism of the shock-accelerated annular SF6 cylinder [J]. Explosion and Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226 [34] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144 [35] LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732 [36] FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005 [37] SUN M, TAKAYAMA K. Conservative smoothing on an adaptive quadrilateral grid [J]. Journal of Computational Physics, 1999, 150(1): 143–180. doi: 10.1006/jcph.1998.6167 [38] TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin: Springer, 2009. [39] ZHANG E L, LIAO S F, ZOU L Y, et al. Refraction of a triple-shock configuration at planar fast-slow gas interfaces [J]. Journal of Fluid Mechanics, 2024, 984: A49. doi: 10.1017/jfm.2024.245 [40] 张恩来, 廖深飞, 邹立勇, 等. 马赫反射波系冲击诱导平面界面失稳的数值模拟 [J]. 中国科学: 物理学 力学 天文学, 2024, 54(10): 104704.ZHANG E L, LIAO S F, ZOU L Y, et al. Numerical simulation of the instability of a planar interface subjected to a Mach reflection wave configuration [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(10): 104704. -