基于频域干涉法测量激光加载亚微米铝膜的冲击参数

陶天炯 翁继东 王翔 刘盛刚 马鹤立 李成军 贾兴 陈龙 吴建 唐隆煌 陈永超

陶天炯, 翁继东, 王翔, 刘盛刚, 马鹤立, 李成军, 贾兴, 陈龙, 吴建, 唐隆煌, 陈永超. 基于频域干涉法测量激光加载亚微米铝膜的冲击参数[J]. 高压物理学报, 2025, 39(4): 040101. doi: 10.11858/gywlxb.20240967
引用本文: 陶天炯, 翁继东, 王翔, 刘盛刚, 马鹤立, 李成军, 贾兴, 陈龙, 吴建, 唐隆煌, 陈永超. 基于频域干涉法测量激光加载亚微米铝膜的冲击参数[J]. 高压物理学报, 2025, 39(4): 040101. doi: 10.11858/gywlxb.20240967
TAO Tianjiong, WENG Jidong, WANG Xiang, LIU Shenggang, MA Heli, LI Chengjun, JIA Xing, CHEN Long, WU Jian, TANG Longhuang, CHEN Yongchao. Shock Parameter Measurement of Sub-Micrometer Aluminum Driven by Laser Using Frequency Domain Interferometer[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 040101. doi: 10.11858/gywlxb.20240967
Citation: TAO Tianjiong, WENG Jidong, WANG Xiang, LIU Shenggang, MA Heli, LI Chengjun, JIA Xing, CHEN Long, WU Jian, TANG Longhuang, CHEN Yongchao. Shock Parameter Measurement of Sub-Micrometer Aluminum Driven by Laser Using Frequency Domain Interferometer[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 040101. doi: 10.11858/gywlxb.20240967

基于频域干涉法测量激光加载亚微米铝膜的冲击参数

doi: 10.11858/gywlxb.20240967
基金项目: 国家自然科学基金(U2241276)
详细信息
    作者简介:

    陶天炯(1984-),男,硕士,高级工程师,主要从事高压物理实验诊断技术研究. E-mail:zjuttj@163.com

  • 中图分类号: O521.3; O433.1

Shock Parameter Measurement of Sub-Micrometer Aluminum Driven by Laser Using Frequency Domain Interferometer

  • 摘要: 针对镀于石英上的亚微米铝膜样品,将飞秒激光(脉宽35 fs、能量0.5 mJ、中心波长800 nm)聚焦其表面,通过激光烧蚀引起铝的快速热膨胀,驱动冲击波传播,使铝样品获得高压加载。透过铝样品背面的石英窗口,采用频域干涉技术,同时测量了冲击径向位移轮廓、粒子速度和冲击波传播速度。通过监测脉冲能量和打靶位置,提高了多发次实验的重复性。采用相位比较算法对实验数据进行分析,实现了亚纳米级的位移分辨率和亚皮秒级的时间分辨率,成功地获得了铝膜在约130 GPa压力下的界面冲击轮廓演化历史。

     

  • 图  频域干涉原理

    Figure  1.  Principle of a frequency domain interferometer

    图  金属膜的泵浦探测实验示意图

    Figure  2.  Schematic diagram of pump-probe experiment for metal film

    图  脉冲激光频域干涉测量装置光路示意图

    Figure  3.  Setup of the optical path of pulse laser frequency domain interferometry measurement

    图  脉冲激光频域干涉信号

    Figure  4.  Signal of the pulse laser frequency domain interference

    图  频域条纹相对相位差计算示意图

    Figure  5.  Schematic diagram for the relative phase difference of frequency domain fringes

    图  位移计算误差变化

    Figure  6.  Changes in displacement calculation error

    图  脉冲频域实验获得的原始干涉图样

    Figure  7.  Original interference pattern of pulse frequency domain experiment

    图  铝膜靶形貌随时间的变化

    Figure  8.  Profile evolution of the aluminum film targets with time

    图  打靶中心的位移剖面(a)和Hugonoit曲线(b)

    Figure  9.  Displacement profiles of shooting center (a) and Hugonoit curve (b)

  • [1] 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999.

    JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999.
    [2] 吴先前, 黄晨光. 强激光驱动爆炸与冲击效应 [J]. 强激光与粒子束, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326

    WU X Q, HUANG C G. Laser driven explosion and shock wave: a review [J]. High Power Laser and Particle Beams, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326
    [3] TOKUNAGA E, TERASAKI A, KOBAYASHI T. Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy [J]. Optics Letters, 1992, 17(16): 1131–1133. doi: 10.1364/OL.17.001131
    [4] EVANS R, BADGER A D, FALLIÈS F, et al. Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum [J]. Physical Review Letters, 1996, 77(16): 3359–3362. doi: 10.1103/PhysRevLett.77.3359
    [5] SALIÈRES P, DEROFF L L, AUGUSTE T, et al. Frequency-domain interferometry in the XUV with high-order harmonics [J]. Physical Review Letters, 1999, 83(26): 5483–5486. doi: 10.1103/PhysRevLett.83.5483
    [6] GAHAGAN K T, MOORE D S, FUNK D J, et al. Measurement of shock wave rise times in metal thin films [J]. Physical Review Letters, 2000, 85(15): 3205–3208. doi: 10.1103/PhysRevLett.85.3205
    [7] MOORE D S, GAHAGAN K T, BUELOW S T, et al. Time-and space-resolved optical probing of the shock rise time in thin aluminum films [J]. Shock Compression of Condensed Matter, 1999, 505(1): 1003–1006.
    [8] FUNK D J, MOORE D S, GAHAGAN K T, et al. Ultrafast measurement of the optical properties of aluminum during shock-wave breakout [J]. Physical Review B, 2001, 64(11): 115114. doi: 10.1103/PhysRevB.64.115114
    [9] MOORE D S, GAHAGAN K T, REHO J H, et al. Ultrafast nonlinear optical method for generation of planar shocks [J]. Applied Physics Letters, 2001, 78(1): 40–42. doi: 10.1063/1.1337629
    [10] CHEN J P, LI R X, ZENG Z N, et al. Experimental EOS determination of aluminum at Mbar pressure [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47(4): 416–423. doi: 10.1360/03yw0059
    [11] HUANG L, YANG Y Q, WANG Y H, et al. Measurement of transit time for femtosecond-laser-driven shock wave through aluminium films by ultrafast microscopy [J]. Journal of Physics D: Applied Physics, 2009, 42(4): 045502. doi: 10.1088/0022-3727/42/4/045502
    [12] 翁继东. 超快脉冲激光干涉技术及其在冲击动力学过程诊断中的应用[D]. 绵阳: 中国工程物理研究院, 2010.
    [13] WALSH J M, RICE M H, MCQUEEN P G, et al. Shock-wave compressions of twenty-seven metals: equations of state of metals [J]. Physical Review Journals Archive, 1957, 108(2): 196–216.
    [14] SESAME. The Los Alamos National Laboratory equation of state database: LA-UR-92-3407 [R]. Los Alamos, USA: Los Alamos National Laboratory, 1992.
  • 加载中
图(9)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  33
  • PDF下载量:  27
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-02-25
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回