DNAN基熔铸炸药的动态力学行为及点火特性

赵东 屈可朋 胡雪垚 何娜 王奕鑫 肖玮

赵东, 屈可朋, 胡雪垚, 何娜, 王奕鑫, 肖玮. DNAN基熔铸炸药的动态力学行为及点火特性[J]. 高压物理学报, 2025, 39(5): 054101. doi: 10.11858/gywlxb.20240936
引用本文: 赵东, 屈可朋, 胡雪垚, 何娜, 王奕鑫, 肖玮. DNAN基熔铸炸药的动态力学行为及点火特性[J]. 高压物理学报, 2025, 39(5): 054101. doi: 10.11858/gywlxb.20240936
ZHAO Dong, QU Kepeng, HU Xueyao, HE Na, WANG Yixin, XIAO Wei. Dynamic Mechanical Behavior and Ignition Characteristics of DNAN-Based Melt-Cast Explosives[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054101. doi: 10.11858/gywlxb.20240936
Citation: ZHAO Dong, QU Kepeng, HU Xueyao, HE Na, WANG Yixin, XIAO Wei. Dynamic Mechanical Behavior and Ignition Characteristics of DNAN-Based Melt-Cast Explosives[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054101. doi: 10.11858/gywlxb.20240936

DNAN基熔铸炸药的动态力学行为及点火特性

doi: 10.11858/gywlxb.20240936
基金项目: 国防重大基础研究专项
详细信息
    作者简介:

    赵 东(2001-),男,硕士研究生,主要从事弹药动态力学响应及安全性研究. E-mail:1303214649@qq.com

    通讯作者:

    屈可朋(1983-),男,研究员,主要从事弹药动态力学响应及安全性研究. E-mail:155301498@qq.com

  • 中图分类号: O347.3; TJ55; O521.9

Dynamic Mechanical Behavior and Ignition Characteristics of DNAN-Based Melt-Cast Explosives

  • 摘要: 为研究某2,4-二硝基苯甲醚(2,4-dinitroanisole,DNAN)基熔铸炸药的动态力学行为和点火特性,基于万能材料试验机和分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)分别开展准静态/动态压缩试验和被动围压试验,并开展落锤冲击点火试验,结合扫描电镜和工业计算机断层扫描观察加载前、后试样的形貌特征,获得了不同加载条件下DNAN基熔铸炸药的应力-应变曲线、点火阈值和损伤特征,揭示了炸药在不同条件下的动态力学行为、点火特性和损伤机制。结果表明:DNAN基熔铸炸药的动态力学行为具有应变率相关性,相较于典型压装炸药,脆性特征更明显,在单轴压缩状态下强度更低,多轴压缩状态下峰值应力接近;孔洞为该炸药的主要初始损伤形式,压缩加载下孔洞被填充压实,主要损伤机制为穿晶断裂、界面脱粘,压剪耦合加载下装药内发生剪切流动,颗粒重新排布,随着加载强度的增大,主要损伤机制由沿晶断裂转向穿晶断裂;落锤冲击点火试验中DNAN基熔铸炸药对压缩加载更敏感,压缩和压剪加载下的最大未反应落高和峰值应力分别为500 mm、556 MPa和600 mm、622 MPa,主要点火机制可能是由孔洞损伤受压缩引起的气泡绝热压缩或孔洞冲击塌缩生热。

     

  • 图  用于不同试验的样品尺寸

    Figure  1.  Sample sizes for different tests

    图  被动围压加载装置示意图

    Figure  2.  Schematic diagram of passive confinement test device

    图  试验样弹示意图

    Figure  3.  Schematic diagram of the sample bomb

    图  落锤加载试验中的样弹

    Figure  4.  Sample bomb of the drop-weight loading test

    图  单轴压缩试验的典型原始曲线

    Figure  5.  Typical original curves of the uniaxial compression test

    图  单轴压缩加载下样品的应力-应变曲线

    Figure  6.  Stress-strain curves of samples under uniaxial compression

    图  被动围压加载下的轴向应力-应变曲线

    Figure  7.  Axial stress-strain curves under passively confined compression

    图  DNAN基熔铸炸药的CT图像

    Figure  8.  CT images of DNAN-based melt-cast explosives

    图  未加载时DNAN基熔铸炸药断面的SEM图像

    Figure  9.  SEM image of unloaded state DNAN-based melt-cast explosive section

    图  10  不同应变率压缩加载后DNAN基熔铸炸药断面SEM图像

    Figure  10.  SEM images of the DNAN-based melt-cast explosive section after compression loading at different strain rates

    图  11  压剪耦合加载后DNAN基熔铸炸药断面SEM图像

    Figure  11.  SEM images of the DNAN-based melt-cast explosive section after compress-shear coupled loading

    表  1  不同应变率单轴压缩加载下的力学参量

    Table  1.   Mechanical parameters under different strain rates of uniaxial compression loading

    Explosives Strain rate/s−1 E/GPa σm/MPa Strain at σm/%
    DNAN-based melt-cast explosive 0.01 0.37 5.64 1.50
    1300 2.12 18.12 1.32
    1700 2.62 22.71 1.19
    2000 3.77 28.26 1.12
    Typical pressed explosive 0.01 0.38 9.72 2.88
    1000 2.94 47.89 4.95
    1400 4.41 48.71 2.88
    1800 8.02 47.76 2.71
    2300 11.36 49.95 1.18
    下载: 导出CSV

    表  2  被动围压状态不同应变率下的力学参量

    Table  2.   Mechanical parameters under different strain rates of passive confinement loading

    ExplosivesStrain rate/s−1σm/MPaStrain at σm/%
    DNAN-based melt-cast explosive45954.461.76
    66082.882.40
    101092.382.93
    Typical pressed explosive47251.052.24
    74478.463.10
    111592.283.98
    下载: 导出CSV

    表  3  落锤冲击加载试验结果

    Table  3.   Test results of the drop-weight impact loading

    Explosives Impact mode H/mm σm/MPa Result
    DNAN-based melt-cast explosive Compress 500 556 No-ignition
    600 537* Ignition
    800 509* Ignition
    Compress-shear 400 487 No-ignition
    600 622 No-ignition
    800 546* Ignition
    Typical pressed explosive Compress 600 668 No-ignition
    800 715 No-ignition
    1000 771 No-ignition
    1200 460* Ignition
    1500 411* Ignition
    Compress-shear 800 726 No-ignition
    1000 668* Ignition
    Note: The superscript “*” indicates the stress at which the explosive begins to ignition at this height.
    下载: 导出CSV
  • [1] DIENES J K. Frictional hot-spots and propellant sensitivity [J]. MRS Online Proceedings Library, 1983, 24(1): 373–381. doi: 10.1557/PROC-24-373
    [2] 李尚昆, 黄西成, 王鹏飞. 高聚物黏结炸药的力学性能研究进展 [J]. 火炸药学报, 2016, 39(4): 1–11. doi: 10.14077/j.issn.1007-7812.2016.04.001

    LI S K, HUANG X C, WANG P F. Recent advances in the investigation on mechanical properties of PBX [J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 1–11. doi: 10.14077/j.issn.1007-7812.2016.04.001
    [3] 屈可朋, 陈鹏, 李亮亮, 等. 含能装药损伤研究进展 [J]. 飞航导弹, 2018(11): 92–96. doi: 10.16338/j.issn.1009-1319.20180153

    QU K P, CHEN P, LI L L, et al. Research progress on damage of energetic charge [J]. Aerodynamic Missile Journal, 2018(11): 92–96. doi: 10.16338/j.issn.1009-1319.20180153
    [4] 朱道理, 周霖, 张向荣, 等. DNAN及TNT基熔铸炸药综合性能比较 [J]. 含能材料, 2019, 27(11): 923–930. doi: 10.11943/CJEM2019170

    ZHU D L, ZHOU L, ZHANG X R, et al. Comparison of comprehensive properties for DNAN and TNT-based melt-cast explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 923–930. doi: 10.11943/CJEM2019170
    [5] LI S R, DUAN Z P, GAO T Y, et al. Size effect of explosive particle on shock initiation of aluminized 2, 4-dinitroanisole (DNAN)-based melt-cast explosive [J]. Journal of Applied Physics, 2020, 128(12): 125903. doi: 10.1063/5.0016310
    [6] 蒙君煚, 周霖, 曹同堂, 等. 2, 4-二硝基苯甲醚(DNAN)基熔铸炸药研究进展 [J]. 含能材料, 2020, 28(1): 13–24. doi: 10.11943/CJEM2018359

    MENG J J, ZHOU L, CAO T T, et al. Research progress of 2, 4-dinitroanisole-based melt-cast explosives [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 13–24. doi: 10.11943/CJEM2018359
    [7] RAVI P, BADGUJAR D M, GORE G M, et al. Review on melt cast explosives [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393–403. doi: 10.1002/prep.201100047
    [8] TAYLOR S, PARK E, BULLION K, et al. Dissolution of three insensitive munitions formulations [J]. Chemosphere, 2015, 119: 342–348. doi: 10.1016/j.chemosphere.2014.06.050
    [9] 李东伟, 姜振明, 张向荣, 等. 2, 4-二硝基苯甲醚基高爆速熔铸炸药爆轰性能表征 [J]. 兵工学报, 2016, 37(4): 656–660. doi: 10.3969/j.issn.1000-1093.2016.04.012

    LI D W, JIANG Z M, ZHANG X R, et al. Characterization of new 2, 4-dinitroanisole-based melt-cast high detonation velocity explosives [J]. Acta Armamentarii, 2016, 37(4): 656–660. doi: 10.3969/j.issn.1000-1093.2016.04.012
    [10] 蒙君煚, 周霖, 金大勇, 等. 成型工艺对2, 4-二硝基苯甲醚基熔铸炸药装药质量的影响 [J]. 兵工学报, 2018, 39(9): 1719–1726. doi: 10.3969/j.issn.1000-1093.2018.09.007

    MENG J J, ZHOU L, JIN D Y, et al. Effect of forming process on casting quality of 2, 4-dinitroanisole-based casting explosive [J]. Acta Armamentarii, 2018, 39(9): 1719–1726. doi: 10.3969/j.issn.1000-1093.2018.09.007
    [11] 李全俊, 杨治林, 岳显, 等. 战斗部熔铸装药精密成型工艺参数优化方法 [J]. 兵器装备工程学报, 2023, 44(5): 125–132. doi: 10.11809/bqzbgcxb2023.05.019

    LI Q J, YANG Z L, YUE X, et al. Optimization method of precision forming process parameters of warhead fusion casting charge [J]. Journal of Ordnance Equipment Engineering, 2023, 44(5): 125–132. doi: 10.11809/bqzbgcxb2023.05.019
    [12] 蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2, 4-二硝基苯甲醚基熔铸炸药性能的影响 [J]. 兵工学报, 2016, 37(3): 424–430. doi: 10.3969/j.issn.1000-1093.2016.03.006

    MENG J J, JIANG Z M, ZHANG X R, et al. Effect of functional agents on the performance of 2, 4-dinitroanisole-based melt-cast explosives [J]. Acta Armamentarii, 2016, 37(3): 424–430. doi: 10.3969/j.issn.1000-1093.2016.03.006
    [13] QIAN W, CHEN X Z, LUO G. Polymer reinforced DNAN/RDX energetic composites: interfacial interactions and mechanical properties [J]. Central European Journal of Energetic Materials, 2017, 14(3): 726–741. doi: 10.22211/cejem/75609
    [14] 蒙君煚, 周霖, 金大勇, 等. 功能助剂对DNAN/RDX熔铸炸药界面黏结强度的影响 [J]. 含能材料, 2018, 26(9): 765–771. doi: 10.11943/CJEM2018061

    MENG J J, ZHOU L, JIN D Y, et al. Effect of functional additives on interface bonding strength of DNAN/RDX melt-cast explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(9): 765–771. doi: 10.11943/CJEM2018061
    [15] SUN S H, ZHANG H B, XU J J, et al. Two novel melt-cast cocrystal explosives based on 2, 4-dinitroanisole with significantly decreased melting point [J]. Crystal Growth & Design, 2019, 19(12): 6826–6830. doi: 10.1021/acs.cgd.9b00680
    [16] YANG Y, DUAN Z P, LI S R, et al. Detonation characteristics of an aluminized DNAN-based melt-cast explosive [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(1): e202200088. doi: 10.1002/prep.202200088
    [17] 李淑睿, 段卓平, 高天雨, 等. 2, 4-二硝基苯甲醚基钝感熔铸含铝炸药的冲击起爆特性 [J]. 含能材料, 2021, 29(2): 88–95. doi: 10.11943/CJEM2020238

    LI S R, DUAN Z P, GAO T Y, et al. Shock initiation characteristic of insensitive DNAN-based aluminized melt-cast explosive [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 88–95. doi: 10.11943/CJEM2020238
    [18] 张思危, 崔庆忠. DNAN基高固含量熔铸炸药力学性能研究 [J]. 兵工自动化, 2022, 41(12): 100–105, 113. doi: 10.7690/bgzdh.2022.12.022

    ZHANG S W, CUI Q Z. Study on mechanical properties of DNAN-based high solid content melt-cast explosive [J]. Ordnance Industry Automation, 2022, 41(12): 100–105, 113. doi: 10.7690/bgzdh.2022.12.022
    [19] 李东伟, 苗飞超, 张向荣, 等. 2, 4-二硝基苯甲醚基不敏感熔注炸药动态力学性能 [J]. 兵工学报, 2021, 42(11): 2344–2349. doi: 10.3969/j.issn.1000-1093.2021.11.007

    LI D W, MIAO F C, ZHANG X R, et al. Dynamic mechanical properties of an insensitive DNAN-based melt-cast explosive [J]. Acta Armamentarii, 2021, 42(11): 2344–2349. doi: 10.3969/j.issn.1000-1093.2021.11.007
    [20] ZHU D L, ZHOU L, ZHANG X R, et al. Simultaneous determination of multiple mechanical parameters for a DNAN/HMX melt-cast explosive by Brazilian disc test combined with digital image correlation method [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 864–872. doi: 10.1002/prep.201700010
    [21] 马腾, 董小丽, 杨年, 等. 约束对DNAN基熔铸炸药点火反应特性的影响 [J]. 火炸药学报, 2023, 46(12): 1086–1092. doi: 10.14077/j.issn.1007-7812.202302007

    MA T, DONG X L, YANG N, et al. Effect of constraints on the ignition reaction characteristics of DNAN-based melt-cast explosives [J]. Chinese Journal of Explosives & Propellants, 2023, 46(12): 1086–1092. doi: 10.14077/j.issn.1007-7812.202302007
    [22] 杨年, 马腾, 黄寅生, 等. 损伤对DNAN基熔铸炸药点火后反应增长的影响 [J]. 火炸药学报, 2023, 46(11): 990–998. doi: 10.14077/j.issn.1007-7812.202302006

    YANG N, MA T, HUANG Y S, et al. Effect of damage on reaction growth of DNAN based melt-cast explosive after ignition [J]. Chinese Journal of Explosives & Propellants, 2023, 46(11): 990–998. doi: 10.14077/j.issn.1007-7812.202302006
    [23] 赵东, 屈可朋, 董泽霖. 凝聚相炸药损伤-点火特性的研究进展 [J]. 爆破器材, 2024, 53(3): 1–9, 16. doi: 10.3969/j.issn.1001-8352.2024.03.001

    ZHAO D, QU K P, DONG Z L. Research progress on damage and ignition characteristics of condensed phase explosives [J]. Explosive Materials, 2024, 53(3): 1–9, 16. doi: 10.3969/j.issn.1001-8352.2024.03.001
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  57
  • PDF下载量:  29
出版历程
  • 收稿日期:  2024-11-08
  • 修回日期:  2024-12-16
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回