透明陶瓷的超高压制备研究进展

邓佶睿 刘方明 刘银娟 刘进 贺端威

邓佶睿, 刘方明, 刘银娟, 刘进, 贺端威. 透明陶瓷的超高压制备研究进展[J]. 高压物理学报, 2018, 32(1): 010104. doi: 10.11858/gywlxb.20170598
引用本文: 邓佶睿, 刘方明, 刘银娟, 刘进, 贺端威. 透明陶瓷的超高压制备研究进展[J]. 高压物理学报, 2018, 32(1): 010104. doi: 10.11858/gywlxb.20170598
DENG Jirui, LIU Fangming, LIU Yinjuan, LIU Jin, HE Duanwei. Progress in Preparation of Transparent Ceramics under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010104. doi: 10.11858/gywlxb.20170598
Citation: DENG Jirui, LIU Fangming, LIU Yinjuan, LIU Jin, HE Duanwei. Progress in Preparation of Transparent Ceramics under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010104. doi: 10.11858/gywlxb.20170598

透明陶瓷的超高压制备研究进展

doi: 10.11858/gywlxb.20170598
基金项目: 

国家自然科学基金 51472171

国家自然科学基金 11427810

详细信息
    作者简介:

    邓佶睿(1990-), 男, 博士研究生, 主要从事透明陶瓷的超高压制备研究.E-mail:dengrave@qq.com

    通讯作者:

    贺端威(1969-), 男, 博士, 教授, 博士生导师, 主要从事高压物理、超硬材料、大腔体静高压技术研究.E-mail:duanweihe@scu.edu.cn

  • 中图分类号: O521.2;O521.3

Progress in Preparation of Transparent Ceramics under High Pressure

  • 摘要: 透明陶瓷是一种具有广阔应用前景的新一代无机非金属材料。本文介绍一种非传统的透明陶瓷制备方法——超高压烧结。相对于传统的制备方法,超高压烧结具有烧结温度低、烧结时间短、致密度高、抑制晶粒长大等特点,对制备纳米结构透明陶瓷具有独特的优势。着重介绍了近年来超高压烧结透明陶瓷的研究成果和进展,包括钇铝石榴石(YAG)、镁铝尖晶石、氧化铝等常见透明陶瓷的超高压低温烧结,以及纳米聚晶金刚石(NPD)、B-C-N、Si3N4等超硬透明陶瓷的高温高压制备,并对透明陶瓷的高压烧结机理进行分析和总结。

     

  • 图  MgAl2O4样品光学图像[52]

    Figure  1.  Optical images of MgAl2O4 samples[52]

    图  在不同温压条件下烧结的MgAl2O4陶瓷图像[15]

    Figure  2.  Images of sintered MgAl2O4 ceramics samples at various pressures and temperatures[15]

    图  在烧结温度600℃下MgAl2O4陶瓷样品的晶粒尺寸及残余应力与烧结压力的关系[15]

    Figure  3.  Residual stress and crystallite size vs.sintering pressure at a desired temperature of 600℃[15]

    图  在烧结压力4GPa下MgAl2O4陶瓷样品的晶粒尺寸及残余应力与烧结温度的关系[15]

    Figure  4.  Residual stress and crystallite size vs.sintering temperature under a desired loading pressure of 4GPa[15]

    图  (a) 超高压处理后的样品照片(插图为素坯); (b)切薄、抛光后的样品在反射光下能看见蓝十字; (c)切薄、抛光后的样品在透射光下能看见蓝线[62]

    Figure  5.  (a) Image of high pressure compacted spinel after recovery from high pressure cell (The inset shows the green impact.); (b) image of blue cross-hair visible below thinned and polished spinel using reflected light; (c) image of blue line below thinned and polished spinel using transmitted light[62]

    图  不同压力条件下烧结的Nd:YAG照片[70]

    Figure  6.  Images of Nd:YAG sintered under different pressures[70]

    图  7.7GPa、不同温度条件下烧结的YAG照片[73]

    Figure  7.  Images of YAG sintered at 7.7GPa and different temperatures[73]

    图  5GPa、不同温度条件下烧结的YAG照片[57]

    Figure  8.  Images of YAG sintered at 5GPa and different temperatures[57]

    图  450℃、不同压力条件下的YAG照片[57]

    Figure  9.  Images of YAG sintered at 450℃ and different pressures[57]

    图  10  高压作用下晶粒形状随压力的变化[74]

    Figure  10.  Transformation of grain shape under high pressures[74]

    图  11  7.7GPa、不同温度条件下烧结的氧化铝陶瓷照片[58]

    Figure  11.  Images of alumina ceramic sintered at 7.7GPa and different temperatures[58]

    图  12  不同温度和压力条件下烧结的氧化铝陶瓷金相显微图像及光学图像[61]

    Figure  12.  Metallographic and corresponding optical images of alumina ceramic sintered at different pressures and temperatures[61]

    图  13  在5.0GPa、不同温度下烧结的氧化铝陶瓷样品金相显微图像及光学图像

    (样品厚度为0.6mm; (a)、(b)、(c)为纯微米球形粉体烧结样品,(d)、(e)、(f)为混合粉体烧结样品; (a)和(d)的烧结条件为5.0GPa、700℃; (b)和(e)的烧结条件为5.0GPa、900℃; (c)和(f)的烧结条件为5.0GPa、1100℃)[89]

    Figure  13.  Metallographic and corresponding optical images of alumina ceramic sintered at 5.0GPa and various temperatures

    (The sample thickness is 0.6mm; (a), (b) and (c) are samples sintered with pure spherical powder, and (d), (e) and (f) are samples sintered with mixed powder; (a) and (d) are samples sintered at 5.0GPa and 700℃, (b) and (e) are samples sintered at 5.0GPa and 900℃; (c) and (f) are samples sintered at 5.0GPa and 1100℃.)[89]

    图  14  NPD的光学图像[51]

    Figure  14.  Optical image of synthesized NPD[51]

    图  15  NPD的光学照片[111]

    Figure  15.  Optical image of NPD[111]

    图  16  在20GPa、2500K条件下合成的金刚石-cBN复合材料[114]

    Figure  16.  Image of diamond-cBN alloy synthesized at 20GPa, 2500K[114]

    图  17  在18GPa、2000℃条件下合成的纳米金刚石-立方氮化硅复合材料[118]

    Figure  17.  Nanocrystalline diamond+c-Si3N4 composites synthesized at 18GPa and 2000℃[118]

    图  18  在15.6GPa、1800℃条件下合成的c-Si3N4纳米透明陶瓷[60]

    Figure  18.  Nanocrystalline form of c-Si3N4 synthesized at 15.6GPa and 1800℃[60]

    图  19  在15GPa、不同温度条件下合成的钙铝石榴石纳米透明陶瓷的透射电镜和光学图像[59]

    Figure  19.  Transmission electron microscope and optical microscope images of polycrystalline grossular samples synthesized at 15GPa and different temperatures[59]

  • [1] 潘裕柏, 徐军, 吴玉松, 等.Nd:YAG透明陶瓷的制备与激光输出[J].无机材料学报, 2006, 21(5):1278-1280. http://d.wanfangdata.com.cn/Periodical_gsyxb200909011.aspx

    PAN Y B, XU J, WU Y S, et al.Fabrication and laser output of Nd:YAG transparent ceramic[J]. Journal of Inorganic Materials, 2006, 21(5):1278-1280. http://d.wanfangdata.com.cn/Periodical_gsyxb200909011.aspx
    [2] 吴玉松, 潘裕柏, 李江, 等.Yb:YAG透明陶瓷的制备和激光输出[J].无机材料学报, 2007, 22(6):1086-1088. http://d.wanfangdata.com.cn/Periodical_wjclxb200706013.aspx

    WU Y S, PAN Y B, LI J, et al.Fabrication and laser output of transparent Yb:YAG ceramic[J]. Journal of Inorganic Materials, 2007, 22(6):1086-1088. http://d.wanfangdata.com.cn/Periodical_wjclxb200706013.aspx
    [3] 雷牧云, 黄存新, 闻芳, 等.透明尖晶石陶瓷的研究进展[J].人工晶体学报, 2007, 36(2):319-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rgjtxb98200702018

    LEI M Y, HUANG C X, WEN F, et al.Development of transparent ceramic spinel[J]. Journal of Synthetic Crystals, 2007, 36(2):319-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rgjtxb98200702018
    [4] COBLE R L.Preparation of transparent ceramic Al2O3[J]. American Ceramic Society Bulletin, 1959, 38(10):507-510.
    [5] KRELL A, KLIMKE J, HUTZLER T.Advanced spinel and sub-μm Al2O3 for transparent armour applications[J]. Journal of the European Ceramic Society, 2009, 29(2):275-281. doi: 10.1016/j.jeurceramsoc.2008.03.024
    [6] DANG K Q, TAKEI S, KAWAHARA M, et al.Pulsed electric current sintering of transparent Cr-doped Al2O3[J]. Ceramics International, 2011, 37(3):957-963. doi: 10.1016/j.ceramint.2010.11.009
    [7] KIM B N, HIRAGA K, MORITA K, et al.Spark plasma sintering of transparent alumina[J]. Scripta Materialia, 2007, 57(7):607-610. doi: 10.1016/j.scriptamat.2007.06.009
    [8] LI W, ZHOU S, LIU N, et al.Effect of additives on optical characteristic of thulium doped yttria transparent ceramics[J]. Optical Materials, 2010, 32(9):971-974. doi: 10.1016/j.optmat.2010.01.037
    [9] HE M S, LI J B, LIN H, et al.Fabrication of transparent polycrystalline yttria ceramics by combination of SPS and HIP[J]. Journal of Rare Earths, 2006, 24(1):222-224. doi: 10.1016/S1002-0721(07)60365-2
    [10] ZHANG J, AN L, LIU M, et al.Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere[J]. Journal of the European Ceramic Society, 2009, 29(2):305-309. doi: 10.1016/j.jeurceramsoc.2008.03.006
    [11] JIN L, ZHOU G, SHIMAI S, et al.ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering[J]. Journal of the European Ceramic Society, 2010, 30(10):2139-2143. doi: 10.1016/j.jeurceramsoc.2010.04.004
    [12] YAMASHITA I, TSUKUMA K.Light scattering by residual pores in transparent zirconia ceramics[J]. Journal of the Ceramic Society of Japan, 2011, 119(1386):133-135. doi: 10.2109/jcersj2.119.133
    [13] PEUCHERT U, OKANO Y, MENKE Y, et al.Transparent cubic-ZrO2 ceramics for application as optical lenses[J]. Journal of the European Ceramic Society, 2009, 29(2):283-291. doi: 10.1016/j.jeurceramsoc.2008.03.028
    [14] ITATANI K, TSUJIMOTO T, KISHIMOTO A.Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing[J]. Journal of the European Ceramic Society, 2006, 26(4):639-645. https://www.sciencedirect.com/science/article/pii/S0955221905005674
    [15] ZOU Y T, HE D W, WEI X K, et al.Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure[J]. Materials Chemistry and Physics, 2010, 123(2):529-533. https://www.researchgate.net/publication/248263777_Nanosintering_Mechanism_of_MgAl2O4_Transparent_Ceramics_Under_High_Pressure
    [16] WANG C, ZHAO Z.Transparent MgAl2O4 ceramic produced by spark plasma sintering[J]. Scripta Materialia, 2009, 61(2):193-196. doi: 10.1016/j.scriptamat.2009.03.039
    [17] DERICIOGLU A F, KAGAWA Y.Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4[J]. Journal of the European Ceramic Society, 2003, 23(6):951-959. doi: 10.1016/S0955-2219(02)00205-4
    [18] MORITA K, KIM B N, HIRAGA K, et al.Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing[J]. Scripta Materialia, 2008, 58(12):1114-1117. doi: 10.1016/j.scriptamat.2008.02.008
    [19] CHEN Q Y, MENG C M, LU T C, et al.Enhancement of sintering ability of magnesium aluminate spinel (MgAl2O4) ceramic nanopowders by shock compression[J]. Powder Technology, 2010, 200(1):91-95. https://www.researchgate.net/publication/229106430_Enhancement_of_Sintering_Ability_of_Magnesium_Aluminate_Spinel_MgAl2O4_Ceramic_Nanopowders_by_Shock_Compression
    [20] MORITA K, KIM B N, YOSHIDA H, et al.Densification behavior of a fine-grained MgAl2O4 spinel during spark plasma sintering (SPS)[J]. Scripta Materialia, 2010, 63(6):565-568. doi: 10.1016/j.scriptamat.2010.06.012
    [21] MORITA K, KIM B N, YOSHIDA H, et al.Spark-plasma-sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal[J]. Journal of the American Ceramic Society, 2009, 92(6):1208-1216. doi: 10.1111/jace.2009.92.issue-6
    [22] MAZZONI A D, SAINZ M A, AGLIETTI E F, et al.Carbon coating and reaction on magnesia-alumina spinel[J]. Materials Chemistry and Physics, 2007, 101(1):211-216. doi: 10.1016/j.matchemphys.2005.04.060
    [23] ZHANG H J, JIA X L, LIU Z J, et al.The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol-gel process[J]. Materials Letters, 2004, 58(10):1625-1628. doi: 10.1016/j.matlet.2003.09.051
    [24] LI J G, IKEGAMI T, LEE J H, et al.Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant[J]. Journal of the European Ceramic Society, 2001, 21(2):139-148. doi: 10.1016/S0955-2219(00)00188-6
    [25] GRANON A, GOEURIOT P, THEVENOT F.Aluminum magnesium oxynitride:a new transparent spinel ceramic[J]. Journal of the European Ceramic Society, 1995, 15(3):249-254. doi: 10.1016/0955-2219(95)93946-Z
    [26] AL-SHARAB J F, COSANDEY F, SINGHAL A, et al.TEM characterization of nanostructured MgAl2O4 synthesized by a direct conversion process from γ-Al2O3[J]. Journal of the American Ceramic Society, 2006, 89(7):2279-2285. https://www.sciencedirect.com/science/article/pii/S0079642514000796
    [27] WANG Y, LU T, GONG L, et al.Light extinction by pores in AlON ceramics:the transmission properties[J]. Journal of Physics D, 2010, 43(27):275403. doi: 10.1088/0022-3727/43/27/275403
    [28] KURAMOTO N, TANIGUCHI H.Transparent AIN ceramics[J]. Journal of Materials Science Letters, 1984, 3(6):471-474. doi: 10.1007/BF00720974
    [29] YEH T S, SACKS M D.Low-temperature sintering of aluminum oxide[J]. Journal of the American Ceramic Society, 1988, 71(10):841-844. doi: 10.1111/jace.1988.71.issue-10
    [30] BIRRINGER R, GLEITER H, KLEIN H P, et al.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J]. Physics Letters A, 1984, 102(8):365-369. doi: 10.1016/0375-9601(84)90300-1
    [31] ZHANG L D, MO C M, WANG T, et al.Structure and bond properties of compacted and heat-treated silicon nitride particles[J]. Physica Status Solidi, 1993, 136(2):291-300. doi: 10.1002/(ISSN)1521-396X
    [32] ZHOU J, ZHANG W, LI J, et al.Upconversion luminescence of high content Er-doped YAG transparent ceramics[J]. Ceramics International, 2010, 36(1):193-197. doi: 10.1016/j.ceramint.2009.07.018
    [33] WU Y, LI J, QIU F, et al.Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics International, 2006, 32(7):785-788. doi: 10.1016/j.ceramint.2005.06.002
    [34] LUPEI V, LUPEI A, IKESUE A.Transparent polycrystalline ceramic laser materials[J]. Optical Materials, 2008, 30(11):1781-1786. doi: 10.1016/j.optmat.2008.03.003
    [35] KANG Y C, ROH H S, PARK S B.Sodium carbonate flux effects on the luminescence characteristics of (Y0.5Gd0.5)2O3:Eu phosphor particles prepared by spray pyrolysis[J]. Journal of the American Ceramic Society, 2001, 84(2):447-449. https://www.researchgate.net/publication/223631395_Effect_of_LiCl_on_the_Crystallization_Behavior_and_Luminescence_of_Y3Al5O12Tb
    [36] WANG G, LI X, GENG Y.Preparation of gadolinium gallium garnet polycrystalline powders for transparent ceramics[J]. Journal of Alloys and Compounds, 2010, 505(1):213-216. doi: 10.1016/j.jallcom.2010.06.031
    [37] GOROKHOVA E I, DEMIDENKO V A, ERON'KO S B, et al.Spectrokinetic characteristics of the emission of Gd2O2S-Tb (Ce) ceramics[J]. Journal of Optical Technology, 2005, 72(1):53-57. doi: 10.1364/JOT.72.000053
    [38] GAZZA G E.Hot-pressing of LiAl5O8 [J]. Journal of the American Ceramic Society, 1972, 55(3):172-173. doi: 10.1111/jace.1972.55.issue-3
    [39] ROY D W, HASTERT J L, COUBROUGH L E, et al. Method for producing transparent polycrystalline body with high ultraviolet transmittance: US5244849[P]. 1993-09-14.
    [40] BARJ M, BOCQUET J F, CHHOR K, et al.Submicronic MgAl2O4 powder synthesis in supercritical ethanol[J]. Journal of Materials Science, 1992, 27(8):2187-2192. doi: 10.1007/BF01117935
    [41] 戴遐明.纳米陶瓷材料及其应用[M].北京:国防工业出版社, 2005.
    [42] 曾令可, 李秀艳.纳米陶瓷技术[M].广州:华南理工大学出版社, 2006.
    [43] 史琳琳, 曾令可, 王慧, 等. 纳米陶瓷的性能及其应用[C]//中国纳微粉体制备与技术应用研讨会, 2003: 288.
    [44] 施锦行.纳米陶瓷的制备及其特性[J].中国陶瓷, 1997, 33(3):36-38.

    SHI J X.The production and characteristic of nanocrystalline ceramics[J]. China Ceramics, 1997, 33(3):36-38.
    [45] 王世敏, 许祖勋, 傅晶.纳米材料制备技术[M].北京:化学工业出版社, 2002.
    [46] 高濂, 李蔚.纳米陶瓷[M].北京:化学工业出版社, 2001.
    [47] YEH T S, SACKS M D.Low-temperature sintering of aluminum oxide[J]. Journal of the American Ceramic Society, 1988, 71(10):841-844. doi: 10.1111/jace.1988.71.issue-10
    [48] BIRRINGER R, GLEITER H, KLEIN H P, et al.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J]. Physics Letters A, 1984, 102(8):365-369. doi: 10.1016/0375-9601(84)90300-1
    [49] ZHANG L D, MO C M, WANG T, et al.Structure and bond properties of compacted and heat-treated silicon nitride particles[J]. Physica Status Solidi, 1993, 136(2):291-300. doi: 10.1002/(ISSN)1521-396X
    [50] 倪文.硅钙石型硅酸钙保温材料的特点与发展趋势[J].新材料产业, 2002(11):32-35. https://www.wenkuxiazai.com/doc/fbc77466960590c69fc376c3.html
    [51] IRIFUNE T, KURIO A, SAKAMOTO S, et al.Materials:ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923):599-600.
    [52] LU T C, CHANG X H, QI J Q, et al.Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics[J]. Applied Physics Letters, 2006, 88(21):213120. doi: 10.1063/1.2207571
    [53] HRENIAK D, FEDYK R, BEDNARKIEWICZ A, et al.Luminescence properties of Nd:YAG nanoceramics prepared by low temperature high pressure sintering method[J]. Optical Materials, 2007, 29(10):1244-1251. doi: 10.1016/j.optmat.2006.05.014
    [54] PAZIK R, GLUCHOWSKI P, HRENIAK D, et al.Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic[J]. Optical Materials, 2008, 30(5):714-718. doi: 10.1016/j.optmat.2007.02.017
    [55] FEDYK R, HRENIAK D, LOJKOWSKI W, et al.Method of preparation and structural properties of transparent YAG nanoceramics[J]. Optical Materials, 2007, 29(10):1252-1257. doi: 10.1016/j.optmat.2006.05.016
    [56] TAN N, KOU Z, DING Y, et al.Novel substantial reductions in sintering temperatures for preparation of transparent hydroxyapatite bioceramics under ultrahigh pressure[J]. Scripta Materialia, 2011, 65(9):819-822. doi: 10.1016/j.scriptamat.2011.07.047
    [57] LIU K, HE D, WANG H, et al.High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics[J]. Scripta Materialia, 2012, 66(6):319-322. doi: 10.1016/j.scriptamat.2011.11.012
    [58] NISHIYAMA N, TANIGUCHI T, OHFUJI H, et al.Transparent nanocrystalline bulk alumina obtained at 7.7GPa and 800℃[J]. Scripta Materialia, 2013, 69(5):362-365. doi: 10.1016/j.scriptamat.2013.05.017
    [59] IRIFUNE T, KAWAKAMI K, ARIMOTO T, et al.Pressure-induced nano-crystallization of silicate garnets from glass[J]. Nature Communications, 2016, 7:13753. doi: 10.1038/ncomms13753
    [60] NISHIYAMA N, ISHIKAWA R, OHFUJI H, et al.Transparent polycrystalline cubic silicon nitride[J]. Scientific Reports, 2017, 7:44755. doi: 10.1038/srep44755
    [61] LIU F M, HE D W, LIU P P, et al.Plastic deformation and sintering of alumina under high pressure[J]. Journal of Applied Physics, 2013, 114(23):233504. doi: 10.1063/1.4844495
    [62] WOLLMERSHAUSER J A, FEIGELSON B N, QADRI S B, et al.Transparent nanocrystalline spinel by room temperature high-pressure compaction[J]. Scripta Materialia, 2013, 69(4):334-337. doi: 10.1016/j.scriptamat.2013.05.014
    [63] 施剑林, 冯涛.无机光学透明材料:透明陶瓷[M].上海:上海科学普及出版社, 2008.
    [64] ВЫДРИК Г А. 透明陶瓷[M]. 陈婉华, 译. 北京: 轻工业出版社, 1987.
    [65] PALOSZ B, STEL'MAKH S, GRZANKA E, et al.High pressure X-ray diffraction studies on nanocrystalline materials[J]. Journal of Physics:Condensed Matter, 2004, 16(5):S353. doi: 10.1088/0953-8984/16/5/003
    [66] PALOSZ B, STELMAKH S, GRZANKA E, et al.Origin of macrostrains and microstrains in diamond-SiC nanocomposites based on the core-shell model[J]. Journal of Applied Physics, 2007, 102(7):074303. doi: 10.1063/1.2785025
    [67] 李霞, 刘宏, 王继扬, 等.钇铝石榴石透明激光陶瓷的研究进展[J].硅酸盐学报, 2004, 32(4):485-489. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cldb201421024

    LI X, LIU H, WANG J Y, et al.Progress in transparent polycrystalline aluminum-yttrium garnet laser ceramic[J]. Journal of the Chinese Ceramic Society, 2004, 32(4):485-489. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cldb201421024
    [68] 李适民, 黄维玲.激光器件原理与设计[M].第2版.北京:国防工业出版社, 2005.
    [69] IKESUE A, KINOSHITA T, KAMATA K, et al.Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4):1033-1040. doi: 10.1111/jace.1995.78.issue-4
    [70] ALANIZ J E, PEREZ-GUTIERREZ F G, AGUILAR G, et al.Optical properties of transparent nanocrystalline yttria stabilized zirconia[J]. Optical Materials, 2009, 32(1):62-68. doi: 10.1016/j.optmat.2009.06.004
    [71] VOVK E A, DEINEKA T G, DOROSHENKO A G, et al.Production of the Y3Al5O12 transparent nanostructured ceramics[J]. Journal of Superhard Materials, 2009, 31(4):252-259. doi: 10.3103/S1063457609040066
    [72] YAVETSKIY R P, VOVK E A, DOROSHENKO A G, et al.Y3Al5O12 translucent nanostructured ceramics-obtaining and optical properties[J]. Ceramics International, 2011, 37(7):2477-2484. doi: 10.1016/j.ceramint.2011.03.041
    [73] LU J, YAGI H, TAKAICHI K, et al.110W ceramic Nd3+:Y3Al5O12 laser[J]. Applied Physics B, 2004, 79(1):25-28. doi: 10.1007/s00340-004-1511-9
    [74] 刘科. YAG纳米透明陶瓷的高压烧结机理及第一性原理物性研究[D]. 成都: 四川大学, 2012: 36-37.

    LIU K. High-pressure sintering mechanism of Y3Al5O12 transparent nanoceramics and its properties from first-principles[D]. Chengdu: Sichuan University, 2012: 36-37.
    [75] 张小锋, 于国强, 姜林文.氧化铝陶瓷的应用[J].佛山陶瓷, 2010, 20(2):38-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fstc201002012
    [76] 朱志斌, 郭志军, 刘英, 等.氧化铝陶瓷的发展与应用[J].陶瓷, 2003(1):5-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tc200301001
    [77] COBLE R L. Transparent alumina and method of preparation: US3026210[P]. 1962-03-20.
    [78] ZHANG X, LIANG S, ZHANG P, et al.Fabrication of transparent alumina by rapid vacuum pressureless sintering technology[J]. Journal of the American Ceramic Society, 2012, 95(7):2116-2119. doi: 10.1111/j.1551-2916.2012.05256.x
    [79] CHENG J, AGRAWAL D, ZHANG Y, et al.Microwave sintering of transparent alumina[J]. Materials Letters, 2002, 56(4):587-592. doi: 10.1016/S0167-577X(02)00557-8
    [80] HAYASHI K, KOBAYASHI O, TOYODA S, et al.Transmission optical properties of polycrystalline alumina with submicron grains[J]. Materials Transactions JIM, 1991, 32(11):1024-1029. doi: 10.2320/matertrans1989.32.1024
    [81] APETZ R, BRUGGEN M P B.Transparent alumina:a light-scattering Model[J]. Journal of the American Ceramic Society, 2003, 86(3):480-486. doi: 10.1111/jace.2003.86.issue-3
    [82] MAO X, WANG S, SHIMAI S, et al.Transparent polycrystalline alumina ceramics with orientated optical axes[J]. Journal of the American Ceramic Society, 2008, 91(10):3431-3433. doi: 10.1111/jace.2008.91.issue-10
    [83] KIM B N, HIRAGA K, MORITA K, et al.Spark plasma sintering of transparent alumina[J]. Scripta Materialia, 2007, 57(7):607-610. doi: 10.1016/j.scriptamat.2007.06.009
    [84] GRASSO S, YOSHIDA H, PORWAL H, et al.Highly transparent α-alumina obtained by low cost high pressure SPS[J]. Ceramics International, 2013, 39(3):3243-3248. doi: 10.1016/j.ceramint.2012.10.012
    [85] WACHTMAN J B, MAXWELL I H.Plastic deformation of ceramic-oxide single crystals[J]. Journal of the American Ceramic Society, 1954, 37(7):291-299. doi: 10.1111/jace.1954.37.issue-7
    [86] KRONBERG M I.Dynamical flow properties of single crystals of sapphire, Ⅰ[J]. Journal of the American Ceramic Society, 1962, 45(6):274-279. doi: 10.1111/jace.1962.45.issue-6
    [87] YOSHIZAWA Y, SAKUMA T.Improvement of tensile ductility in high-purity alumina due to magnesia addition[J]. Acta Metallurgica et Materialia, 1992, 40(11):2943-2950. doi: 10.1016/0956-7151(92)90458-Q
    [88] WARSHAW S I, NORTON F H.Deformation behavior of polycrystalline aluminum oxide[J]. Journal of the American Ceramic Society, 1962, 45(10):479-486. doi: 10.1111/jace.1962.45.issue-10
    [89] LIU F M, HE D W, WANG Q, et al.Bimodal transparent alumina ceramics prepared with micro/nano-particles under high pressure[J]. Scripta Materialia, 2016, 122:54-58. doi: 10.1016/j.scriptamat.2016.05.017
    [90] MCMILLAN P F.New materials from high-pressure experiments[J]. Nature Materials, 2002, 1(1):19-25. doi: 10.1038/nmat716
    [91] MCMILLAN P F.Chemistry of materials under extreme high pressure-high-temperature conditions[J]. Chemical Communications, 2003(8):919-923. doi: 10.1039/b300963g
    [92] MCMILLAN P F.Chemistry at high pressure[J]. Chemical Society Reviews, 2006, 35(10):855-857. doi: 10.1039/b610410j
    [93] LIU A Y, COHEN M L.Prediction of new low compressibility solids[J]. Science, 1989, 245(4920):841-843. doi: 10.1126/science.245.4920.841
    [94] VEPREK S.The search for novel, superhard materials[J]. Journal of Vacuum Science & Technology A, 1999, 17(5):2401-2420. https://mediatum.ub.tum.de/doc/958917/958917.pdf
    [95] LIU A Y, WENTZCOVITCH R M.Stability of carbon nitride solids[J]. Physical Review B, 1994, 50(14):10362. doi: 10.1103/PhysRevB.50.10362
    [96] MA H A, JIA X P, CHEN L X, et al.High-pressure pyrolysis study of C3N6H6:a route to preparing bulk C3N4[J]. Journal of Physics:Condensed Matter, 2002, 14(44):11269. doi: 10.1088/0953-8984/14/44/466
    [97] FANG L, OHFUJI H, SHINMEI T, et al.Experimental study on the stability of graphitic C3N4 under high pressure and high temperature[J]. Diamond and Related Materials, 2011, 20(5):819-825.
    [98] HUBERT H, DEVOUARD B, GARVIE L A J, et al.Icosahedral packing of B12 icosahedra in boron suboxide (B6O)[J]. Nature, 1998, 391(6665):376-378. doi: 10.1038/34885
    [99] HE D W, ZHAO Y S, DAEMEN L, et al.Boron suboxide:as hard as cubic boron nitride[J]. Applied Physics Letters, 2002, 81(4):643-645. doi: 10.1063/1.1494860
    [100] CHEN C, HE D W, KOU Z L, et al.B6O-based composite to rival polycrystalline cubic boron nitride[J]. Advanced Materials, 2007, 19(23):4288-4291. doi: 10.1002/(ISSN)1521-4095
    [101] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al.Ultimate metastable solubility of boron in diamond:synthesis of superhard diamondlike BC5[J]. Physical Review Letters, 2009, 102(1):015506. doi: 10.1103/PhysRevLett.102.015506
    [102] ZININ P V, MING L C, KUDRYASHOV I, et al.Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature[J]. Journal of Raman Spectroscopy, 2007, 38(10):1362-1367. doi: 10.1002/(ISSN)1097-4555
    [103] BADZIAN A R.Cubic boron nitride-diamond mixed crystals[J]. Materials Research Bulletin, 1981, 16(11):1385-1393. doi: 10.1016/0025-5408(81)90057-X
    [104] SASAKI T, AKAISHI M, YAMAOKA S, et al.Simultaneous crystallization of diamond and cubic boron nitride from the graphite relative boron carbide nitride (BC2N) under high pressure/high temperature conditions[J]. Chemistry of Materials, 1993, 5(5):695-699. doi: 10.1021/cm00029a020
    [105] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al.Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10):1385-1387. doi: 10.1063/1.1337623
    [106] ZHAO Y, HE D W, DAEMEN L L, et al.Superhard B-C-N materials synthesized in nanostructured bulks[J]. Journal of Materials Research, 2002, 17(12):3139-3145. doi: 10.1557/JMR.2002.0454
    [107] SOLOZHENKO V L.High-pressure synthesis of novel superhard phases in the B-C-N system:recent achievements[J]. High Pressure Research, 2009, 29(4):612-617. doi: 10.1080/08957950903414987
    [108] KNITTLE E, KANER R B, JEANLOZ R, et al.High-pressure synthesis, characterization, and equation of state of cubic c-BN solid solutions[J]. Physical Review B, 1995, 51(18):12149-12156. doi: 10.1103/PhysRevB.51.12149
    [109] Diamond[EB/OL]. [2016-09-20]. https://en.wikipedia.org/wiki/Diamond.
    [110] HARANO K, SATOH T, SUMIYA H.Cutting performance of nano-polycrystalline diamond[J]. Diamond and Related Materials, 2012, 24:78-82. doi: 10.1016/j.diamond.2011.11.005
    [111] 许超. 纳米聚晶金刚石的高温高压合成与表征[D]. 成都: 四川大学, 2014: 91-92.

    XU C. High pressure and high temperature synthesis and characterization of nano polycrystalline diamond[D]. Chengdu: Sichuan University, 2014: 91-92.
    [112] SUMIYA H, IRIFUNE T, KURIO A, et al.Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure[J]. Journal of Materials Science, 2004, 39(2):445-450. doi: 10.1023/B:JMSC.0000011496.15996.44
    [113] SUMIYA H, IRIFUNE T.Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds[J]. SEI Technical Review, 2008, 66:85-92.
    [114] WANG P, HE D W, WANG L P, et al.Diamond-cBN alloy:a universal cutting material[J]. Applied Physics Letters, 2015, 107(10):101901. doi: 10.1063/1.4929728
    [115] RILEY F L.Silicon nitride and related materials[J]. Journal of the American Ceramic Society, 2000, 83(2):245-265.
    [116] TANAKA I, OBA F, SEKINE T, et al.Hardness of cubic silicon nitride[J]. Journal of Materials Research, 2002, 17(4):731-733. doi: 10.1557/JMR.2002.0105
    [117] ZERR A, KEMPF M, SCHWARZ M, et al.Elastic moduli and hardness of cubic silicon nitride[J]. Journal of the American Ceramic Society, 2002, 85(1):86-90.
    [118] WANG W D, HE D W, TANG M J, et al.Superhard composites of cubic silicon nitride and diamond[J]. Diamond and Related Materials, 2012, 27:49-53. https://www.sciencedirect.com/science/article/pii/S0925963512001380
  • 加载中
图(19)
计量
  • 文章访问数:  17710
  • HTML全文浏览量:  4313
  • PDF下载量:  457
出版历程
  • 收稿日期:  2017-06-24
  • 修回日期:  2017-07-13

目录

    /

    返回文章
    返回