Volume 38 Issue 2
Apr 2024
Turn off MathJax
Article Contents
WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020109. doi: 10.11858/gywlxb.20230771
Citation: WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020109. doi: 10.11858/gywlxb.20230771

First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure

doi: 10.11858/gywlxb.20230771
  • Received Date: 27 Oct 2023
  • Rev Recd Date: 29 Dec 2023
  • Available Online: 14 Mar 2024
  • Issue Publish Date: 05 Apr 2024
  • Rare-earth metal superhydrides have attracted much attention because of their high-temperature superconductivity. Since experimental measurements can only determine the structures of rare-earth metal atoms in the superhydrides, first-principles calculations have become an important complementary method for a comprehensive understanding on their structures and physical properties. In this work, the elasticity, lattice dynamics and proton dynamics properties of face-centered cubic CeH9 and CeH10 with different hydrogen contents but the same Ce lattice structure are investigated comparatively by first-principles calculations. The low hydrogen content is found to favor the elastic and phonon stabilization of face-centered cubic cerium superhydrides expanding to low pressures. At 100–140 GPa, CeH9 and CeH10 do not have significant proton diffusion at room temperature, but fully transform into the superionic state at 1500 K with diffusion coefficients of 1.6×10−4−1.2×10−4 cm2/s and 1.9×10−4−1.5×10−4 cm2/s; the diffusion coefficient is positively correlated with temperature and hydrogen content, but negatively correlated with pressure. The findings on the laws of pressure, temperature and hydrogen content affecting the structure and dynamics of cerium superhydrides are obtained, which can be used as a reference for the study of other superhydrides.

     

  • loading
  • [1]
    FLORES-LIVAS J A, BOERI L, SANNA A, et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials [J]. Physics Reports, 2020, 856: 1–78. doi: 10.1016/j.physrep.2020.02.003
    [2]
    PICKARD C J, ERREA I, EREMETS M I. Superconducting hydrides under pressure [J]. Annual Review of Condensed Matter Physics, 2020, 11: 57–76. doi: 10.1146/annurev-conmatphys-031218-013413
    [3]
    WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [4]
    LI Z W, HE X, ZHANG C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nature Communications, 2022, 13(1): 2863. doi: 10.1038/s41467-022-30454-w
    [5]
    KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [6]
    LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
    [7]
    LIU H Y, NAUMOV I I, GEBALLE Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Physical Review B, 2018, 98(10): 100102. doi: 10.1103/PhysRevB.98.100102
    [8]
    GEBALLE Z M, LIU H Y, MISHRA A K, et al. Synthesis and stability of lanthanum superhydrides [J]. Angewandte Chemie, 2018, 130(3): 696–700. doi: 10.1002/ange.201709970
    [9]
    LILIA B, HENNIG R, HIRSCHFELD P, et al. The 2021 room-temperature superconductivity roadmap [J]. Journal of Physics: Condensed Matter, 2022, 34(18): 183002. doi: 10.1088/1361-648X/ac2864
    [10]
    GUIGUE B, MARIZY A, LOUBEYRE P. Synthesis of UH7 and UH8 superhydrides: additive-volume alloys of uranium and atomic metal hydrogen down to 35 GPa [J]. Physical Review B, 2020, 102(1): 014107. doi: 10.1103/PhysRevB.102.014107
    [11]
    KRUGLOV I A, KVASHNIN A G, GONCHAROV A F, et al. High-temperature superconductivity of uranium hydrides at near-ambient conditions [EB/OL]. arXiv: 1708.05251 (2017-08-17)[2023-10-27]. https://arxiv.org/abs/1708.05251v1.
    [12]
    MA L, LIU G T, WANG Y Y, et al. Experimental syntheses of sodalite-like clathrate EuH6 and EuH9 at extreme pressures [EB/OL]. arXiv: 2002.09900 (2020-02-23)[2023-10-27]. https://arxiv.org/abs/2002.09900v1.
    [13]
    MA L, ZHOU M, WANG Y Y, et al. Experimental clathrate superhydrides EuH6 and EuH9 at extreme pressure conditions [J]. Physical Review Research, 2021, 3(4): 043107. doi: 10.1103/PhysRevResearch.3.043107
    [14]
    ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849
    [15]
    SALKE N P, DAVARI ESFAHANI M M, ZHANG Y J, et al. Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice [J]. Nature Communications, 2019, 10(1): 4453. doi: 10.1038/s41467-019-12326-y
    [16]
    SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [17]
    DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [18]
    LI X, HUANG X L, DUAN D F, et al. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure [J]. Nature Communications, 2019, 10(1): 3461. doi: 10.1038/s41467-019-11330-6
    [19]
    SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Synthesis of ThH4, ThH6, ThH9 and ThH10: a route to room-temperature superconductivity [EB/OL]. arXiv: 1902.10206 (2019-02-26)[2023-10-27]. https://arxiv.org/abs/1902.10206v1.
    [20]
    SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
    [21]
    PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [22]
    WANG H, YE X Q, ZHANG X T, et al. Unveiling hidden physics in the 215-kelvin superconducting calcium hydride: temperature, quantum and defect effects [EB/OL]. arXiv: 2308.12618 (2023-08-24)[2023-10-27]. https://arxiv.org/abs/2308.12618.
    [23]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [24]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [25]
    BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [26]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [27]
    OUADHA I, RACHED H, AZZOUZ-RACHED A, et al. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1− x Ti x )3AlC2 [J]. Computational Condensed Matter, 2020, 23: e00468. doi: 10.1016/j.cocom.2020.e00468
    [28]
    TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021
    [29]
    MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970
    [30]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [31]
    WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
    [32]
    WANG H, SALZBRENNER P T, ERREA I, et al. Quantum structural fluxion in superconducting lanthanum polyhydride [J]. Nature Communications, 2023, 14(1): 1674. doi: 10.1038/s41467-023-37295-1
    [33]
    CHEN W H, SEMENOK D V, HUANG X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Physical Review Letters, 2021, 127(11): 117001. doi: 10.1103/PhysRevLett.127.117001
    [34]
    SKARMOUTSOS I, DELLIS D, MATTHEWS R P, et al. Hydrogen bonding in 1-butyl- and 1-ethyl-3-methylimidazolium chloride ionic liquids [J]. The Journal of Physical Chemistry B, 2012, 116(16): 4921–4933. doi: 10.1021/jp209485y
    [35]
    STEINCZINGER Z, JÓVÁRI P, PUSZTAI L. Comparison of 9 classical interaction potentials of liquid water: simultaneous reverse Monte Carlo modeling of X-ray and neutron diffraction results and partial radial distribution functions from computer simulations [J]. Journal of Molecular Liquids, 2017, 228: 19–24. doi: 10.1016/j.molliq.2016.09.068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(46) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return